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Preface

These notes are about group theory and its applications to the sciences, particularly
physics and chemistry. Many excellent textbooks on group theory already exist.
However, I do think these notes have something to offer. I think group theory is an
extremely important and useful tool that any physicist (theorist or experimentalist)
could use productively. However, I remember being frustrated when learning group
theory because no book seemed to have quite what I wanted. I wanted a book that
didn’t shy away from proofs but was also not quite written for aspiring theoretical
mathematicians. It wasn’t once or twice that I read statements like "(* (2) is a
double cover of ($ (3)" in physics textbooks, only to have "double cover" never
explained and any statements involving it never proven. Or, in classical mechanics
contexts, that a rigid motion of an object can be written as a translation followed by
a rotation about some axis through the object (this is Chasles’ theorem). I always
found this frustrating. We will explicitly and clearly prove that any rotation in R3, in
other words any ' ∈ ($ (3), is a rotation about some axis. Likewise, we will guide
through problems many aspects of the "double cover" claims and prove or, at the
very least, see plausible outlines of the proofs of those claims.

After covering the traditional group theory topics that are covered in Part I of
these notes, an overwhelming number of abstract algebra books switch gears to rings,
fields, Galois theory, etc... We won’t do this. Instead, we will switch to representation
theory of finite groups in Part II and then go to applications in physics settings. My
goal is to get to applications as fast as possible while still being rigorous and proving
as many claims as possible. Hopefully this approach and style is useful to some.

Large parts of Part I, II are heavily influenced by the fine lectures given in
Fine Hall by Dr. Mark McConnell for MATH 340 in the Fall 2019 semester at
Princeton University. Those parts were then fleshed out a bit more during the Fall
2020 semester. I also learned and borrowed a lot from Serre’s "Linear Representation
of Finite Groups," Zee’s "Group Theory in a Nutshell for Physicists," and parts of
Dummit and Foote’s "Abstract Algebra."

Princeton, NJ Benjamin Strekha
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Part I
Theory of Groups



The first part covers the general terminology of group theory and proves many of
the theorems of group theory taught to undergraduates in the USA. Before applying
group theory to interesting applications in physics or cryptography, one must first
invest some time to learn the fundamentals. This is quite similar to learning the
fundamentals of piano practice before trying to learn Piano Concerto No. 2 in
C minor by Sergei Rachmaninoff. Do not rush through the first part. Read and
understand the theorems. Work through as many exercises as possible to reinforce
the concepts introduced in the chapters. The more exciting stuff in later parts builds
on previously introduced concepts, so there is no point in rushing.



Chapter 1
Introduction to Abstract Algebra

Abstract This chapter introduces groups abstractly and then provides some exam-
ples.

1.1 What is a Group?

Definition 1.1 Let � be a set. A binary operation, which we will label by �, is a map
� : � × � → �. Denote the image of (G, H) ∈ � × � by G � H instead of �(G, H).

Definition 1.2 Abinary operation� : �×� → � is associative if G�(H�I) = (G�H)�I
for any G, H, I ∈ �.

Definition 1.3 Let � be a set and let � : � × � → � be a binary operation. We say
G, H ∈ � commute if G � H = H � G.

Definition 1.4 Let � be a set and let � : � × � → � be a binary operation. We say
that � with this binary operation is a group if

• � is associative.
• There exists an element 4 ∈ � called the identity element such that G�4 = 4�G = G
for any G ∈ �.

• For any G ∈ � there exists a H ∈ � such that G � H = H � G = 4. We say that H is
the inverse of G.

If G � H = H � G for ∀G, H ∈ � we say that � is an abelian (or commutative) group.
Otherwise, we say that� is a non-abelian (or noncommutative) group. If� is a finite
set, we say that it is a finite group. Note that the existence of the identity element
ensures that a group is not an empty set.

Note: We do not need to explicitly state that � must be closed under the binary
operation since the definition of the binary operator � : � ×� → � already implies
closure. The condition of closure under the binary operation will, however, need to
be stipulated separately for subgroups.
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4 1 Introduction to Abstract Algebra

Note: Writing G � H can get tedious and some groups have a binary operation that
we normally think of as multiplication. Therefore, often one uses the multiplicative
notation where G�H is written as GH and the inverse of G is denoted as G−1. In general,
G= for = ∈ Z will mean

G= =



= terms︷︸︸︷
G · · · G if = > 0,
4 if = = 0,
G−1 · · · G−1︸      ︷︷      ︸
|= | terms

if = < 0.
(1.1)

Also note that one needs to write G−1H or HG−1, since it usuallymatters. For abelian
groups, G−1H = HG−1 and sometimes even for non-abelian groups two elements can
commute. However, in general we cannot use notation such as H

G
. If the group is

non-abelian, should one interpret G
H
as GH−1 or H−1G?

Note: Writing G � H can get tedious and some groups have a binary operation that
we normally think of as addition. When this is the case, one can write G+ H instead of
G � H and −G for the inverse of G. Also, often the identity element for additive groups
is written as 0 instead of 4. Instead of writing G=, we write =G where we mean

=G =



= terms︷      ︸︸      ︷
G + · · · + G if = > 0,
0 if = = 0,
(−G) + · · · + (−G)︸                ︷︷                ︸

|= | terms

if = < 0.
(1.2)

In additive notation, wewill sometimes write G−H, which we define tomean G+(−H).
The additive notation is almost always used for abelian groups, so G+(−H) or (−H)+G
will be the same and leave no ambuguity.

Later on, we will often omit �, unless a clear distinction or emphasis is needed.
Instead, we will usually use the multiplicative notation in lemmas, corollaries, the-
orems, and proofs unless the groups we deal with have a natural addition operation
already associated with the elements. For clarity, if a group� has a binary operation
� and identity element 4 we will write the group as

(�,�, 4) or (�,�).

This notation makes it clear what the set is (�), what the group binary operation
is (�), and what element in � is the identity element (4). Before continuing with
examples, we note that one can deduce properties of groups using only the group
axioms.

Proposition 1.1 Let � be a group. Then

i) The identity element 4 of a group � is unique.
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ii) The inverse of an element G ∈ � is unique.
iii) The inverse of the inverse of an element is that element. That is, (G−1)−1 = G for

all G ∈ �.
iv) (GH)−1 = H−1G−1 for any G, H ∈ �.
v) For any G1, G2, . . . , G= ∈ � the value of G1 · G2 · · · G= is independent of how the

expression is parenthesized. This is called the general associative law.

Proof We use multiplicative notation here (as will often, but not always, be the case
throughout this text).

i) Suppose that 4, 4′ were both identity elements in �. Then

4′ = 4 · 4′ since 4 is an identity element (1.3)
= 4 since 4′ is an identity element

ii) Assume that H and H′ are inverses of G. Then

H′ = 4 · H′ (1.4)
= (H · G) · H′

= H · (G · H′) (by associativity)
= H · 4
= H.

Thus, H = H′ so the inverse is unique.
iii) Since G−1 ·G = G ·G−1, this means that G is an inverse of G−1. Since we proved that

inverses are unique, this means that G is the inverse of G−1. That is, (G−1)−1 = G.
iv) The reader is asked to prove this in Problem 1.1. (Do it now!)
v) This holds trivially for = = 1, = = 2 and it holds for = = 3 by the group

axioms. This establishes a base case which can be used in (strong) mathematical
induction. We will show all parenthesizations are equivalent by showing that
they all equal

((. . . (G1 · G2) · G3) . . . ) · G=, (1.5)

which is called the left-associated expression. Let = > 3 and assume that the
theorem holds for all 1 ≤ < < =. Note that no matter how we parenthesize the
expression, there will always be an outermost multiplication:

0 · 1 (1.6)

where 0 = G1 · · · G< and 1 = G<+1 · · · G= for some integer 0 < < < =.We don’t
know how these 0, 1 are parenthesized, but by assumption those parenthesiza-
tions can be written/reinterpreted as left-associated expressions. Then we note
the following:

• If 1 consists of only one term (that is, < = = − 1), then the expression for
0 · 1 is a left-associated expression.
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• If 1 has more then one term, then we note that we can rewrite 0 · 1 as

0 · 1 = 0 · (2 · G=) (1.7)

where 2 = G<+1 · · · G=−1 is a left-associated expression (make sure that you
see why this is true). Applying associativity then gives

0 · 1 = (0 · 2) · G=, (1.8)

and so the expression 0 · 2 can be rewritten/reinterpreted as a left-associated
expression so that the final expression for 0 · 1 is left-associated.

This completes the induction and the proof. �

Example 1.1 The set of all integers Z forms a group under addition (in the usual
sense of addition). This is because

• Addition is associative.
• The integer 0 acts like the identity element since 0+ G = G + 0 = G for any G ∈ Z.
• Every nonzero integer G ∈ Z has an integer, which we label as −G, such that
G + (−G) = (−G) + G = 0. (Zero is its own inverse.)

This group can be succinctly denoted as (Z, +, 0).

Definition 1.5 Let � be a finite group. The number of elements in � is called the
order or cardinality of the group. We write |� | for the order of the group.

Definition 1.6 Let � be a group and let G ∈ �. We define the order of G ∈ � to be
the smallest positive integer = such that G= = 4. If no such positive integer = exists,
we say that G has infinite order. We write |G | for the order of the element G ∈ �.

Note: Do not confuse these notations for absolute values.

Example 1.2 The group (Z, +, 0) is infinite. Every nonidentity element has infinite
order. For example, adding 1 to itself any number of times always increases, never
going to 0, which is the identity element of this group. Thus, 1 has infinite order.

Note: In the above example, don’t think that 12 = 1, so 1 has finite order. Do not
confuse multiplicative notation in definitions and theorems with the actual action of
multiplication that you learned in prior courses. The group binary operation in the
above example is addition, not multiplication.

Let’s consider a few more examples of groups.

Example 1.3 The set {1,−1, 8,−8} where 8 =
√
−1 is a group under complex multi-

plication. The inverse of −1 is −1, and 8,−8 are inverses of each other. This is a finite
group. −1 has order 2, while 8 and −8 have order 4.

Example 1.4 The set of all positive rational numbers, denotedQ+,Q−{0}, orQ\{0}
is a group under multiplication. The number 1 acts as the identity element, and every
rational number A ∈ Q+ has an inverse A−1 which is also a positive rational number.
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Example 1.5 Let � be the set of all complex number of modulus 1 is a group under
multiplication. That is,

� = {I | I ∈ C, |I | = 1}, (1.9)

where |I | means the complex modulus of I. Do not confuse � with C. See Figure
1.1 for a visualization of the set �.

Fig. 1.1: The set � is a unit circle in the complex plane, centered at the origin.

Example 1.6 The set of all 2-by-2 matrices form a group under component-wise
addition. That is, [

01 11
21 31

]
+

[
02 12
22 32

]
=

[
01 + 02 11 + 12
21 + 22 31 + 32

]
. (1.10)

The identity element of this set is
[
0 0
0 0

]
(not

[
1 0
0 1

]
! Don’t be confused by this!). The

inverse of
[
0 1

2 3

]
is

[
−0 −1
−2 −3

]
.

See Problem 1.4 to practice using the binary notation � and to check your under-
standing of the group axioms. 1.4.

1.1.1 The Cayley Table. Once and Only Once.

A convenient way to gather information about a finite group is using a Cayley table,
or multiplication table (since multiplicative notation is very common). Suppose that
the group � has = elements. Label the elements of � as follows:

61, 62, . . . , 6=. (1.11)
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Construct an =-by-= table where the (8, 9) entry (the 8Cℎ row and 9 Cℎ column) is the
element 686 9 (in multiplicative notation. In general, the (8, 9) entry is 68 � 6 9 .). See
Table 1.1.

Table 1.1: Cayley table for a generic finite group.

� · · · 6 9 · · ·
.
.
.

. . .

68 686 9

.

.

.
. . .

A nice property of such a table is that each group element appears only once in
each row and each column. This is because every element in the group has an inverse.
That is, suppose that in row 8 there were two columns 9 , : such that 686 9 = 686: .
Since we are dealing with a group, 68 has an inverse 6−1

8
, so

686 9 = 686: , (1.12)

6−1
8 686 9 = 6

−1
8 686: , (1.13)

6 9 = 6: . (1.14)

Thus, 9 = : so the columns are actually the same. Of course, a similar argument
can be repeated to show that each element appears only once in any given column.
A useful mnemonic for this property is to think of this as the "once and only once
rule."

Example 1.7 Consider the group inExample 1.3. That is, consider the set {1,−1, 8,−8}
where 8 =

√
−1 and the binary operation is multiplication. The Cayley table for this

group is shown in Table 1.2.

Table 1.2: Cayley table for the group in Example 1.7

· 1 −1 8 −8
1 1 −1 8 −8
−1 −1 1 −8 8

8 8 −8 −1 1
−8 −8 8 1 −1
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1.1.2 The Dihedral Group

Definition 1.7 A regular =-gon is the plane figure with = equal sides and = equal
interior angles.

See Figure 1.2 for some examples of =-gons.

= = 3 = = 4 = = 5

= = 6 = = 7 = = 8

Fig. 1.2: Examples of regular =-gons.

Definition 1.8 The dihedral group �= is the group of symmetries of the regular
=-gon in the plane, including rotations and reflections.

Important remark: Some books denote the group of symmetries of a regular
=-gon as �2=. As we will see below, the size of the symmetry group of rotations
and reflections for an =-gon is 2=. Thus, the books that write �2= choose to let the
subscript denote the order of the group. In this book, we will choose the subscript
to denote the number of edges of the shape. Thus, for us |�= | = 2= instead of
|�2= | = 2=. If you read about dihedral groups online or in other books, make sure
you figure out which notation is used to avoid confusion.

Let A be counter-clockwise	 rotation by 2c/= radians. Let B be reflection across
a line that goes through the center of the =-gon and through a vertex (a horizontal
line through through each of the examples provided in Figure 1.2 would work as a
chose for B).

Example 1.8 Consider the 6-gon. There are 6 distinct rotations that leave the 6-gon
invariant. These are rotations by : ·2c/6 for : = 0, 1, . . . , 5. There are also 6 lines for
which reflection across the line leaves the 6-gon invariant. See Figure 1.3. Therefore,
we count 6 rotations and 6 reflections for a total of 12 symmetries of the 6-gon.

Example 1.9 Consider the 5-gon. There are 5 distinct rotations that leave the 5-gon
invariant. These are rotations by : ·2c/5 for : = 0, 1, . . . , 4. There are also 5 lines for
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Fig. 1.3: Lines for which reflection across the line is a symmetry. There are 6 such
lines for a 6-gon.

which reflection across the line leaves the 5-gon invariant. See Figure 1.4. Therefore,
we count 5 rotations and 5 reflections for a total of 10 symmetries of the 5-gon.

Fig. 1.4: Lines for which reflection across the line is a symmetry. There are 5 such
lines for a 5-gon.

Notice that for the 5-gon, all the lines of reflection pass through one vertex and the
middle of the opposing edge. Compare this to the 6-gon in Example 1.8. Therefore,
there were lines of reflection that passes through two opposing vertices or through the
middles of two opposing edges. Convince yourself that this is a general observation.
An =-gon with = ≥ 3 odd has only one "type" of line of reflection but if = ≥ 3 is
even then it has two "types" of lines of reflections.

Plane regions can be given either a counter-clockwise 	 or a clockwise � ori-
entation. In R3, there are two orientations, which can be distinguished by the right-
hand rule and the left-hand rule. A transformation can be orientation-preserving
or orientation-reversing. We will see later in Chapter 12 that in R= a linear
transformation � is orientation-preserving if det � > 0 and orientation-reversing
if det � < 0. Orientation-preserving transformations of R= are called rotations.
Orientation-reversing transformations of R= are reflections, or products of reflec-
tions.

Proposition 1.2 Every element of �= is either A: or A: B for : = 0, . . . , = − 1.

Proof There are exactly = rotations of �=

4 = A0, A, . . . , A=−1. (1.15)
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These are orientation-preserving transformations. Let C be any orientation-reversing
element of�=.Then CB is orientation-preserving. Theremust exist a : ∈ {0, . . . , n-1}
such that CB = A: . By the group axioms, B has an inverse B−1 so

C = C4 = C (BB−1) = (CB)B−1 = A: B−1. (1.16)

Finally, it is clear that reflecting twice is the same as the identity: B2 = 4. This means
that B−1 = B. Thus, C = A: B. Since C was an arbitrary orientation-reversing element
of �=, we have proven our claim. �

Thus, we see that �= = {4, A, A2, . . . , A=−1︸               ︷︷               ︸
= rotations

, B, AB, A2B, . . . , A=−1B︸                   ︷︷                   ︸
= reflections

}.

Thus, |�= | = 2= in our notation. Let’s build some computational techniques to
use when dealing with �= for = ≥ 3. We note that A= = 4, B2 = 4. We claim that
AB = BA−1 and BA = A−1B.

Proposition 1.3 In �= for any = ≥ 3, AB = BA−1.

Proof WLOG, let B be reflection across the horizontal axis (so we center our coor-
dinate system at the center of the =-gon). Let A be counter-clockwise	 rotation by

2c/=. Let e1 =

[
1
0

]
and e2 =

[
0
1

]
. Let v = e1 and let w =

[
cos(2c/=)
sin(2c/=)

]
. Since = > 2,

{v,w} is a basis for R2. If suffices to show that AB and BA−1 act on the same on v and

on w (do you see why?). Let u =
[
cos(−2c/=)
sin(−2c/=)

]
. See Figure 1.5 for a visualization

of these vectors.

Fig. 1.5: A visualization of the vectors u, v,w used in the proof. With this figure it
is easy to see, for example, that w B↦−→ u.

Note that
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v B↦−→ v A↦−→ w (1.17)

v A−1

↦−→ u B↦−→ w (1.18)

so BA and A−1B act the same on v. Note that

w B↦−→ u A↦−→ v (1.19)

w A−1

↦−→ v B↦−→ v (1.20)

so BA and A−1B act the same on w. As a side note, we found that in the basis {v,w}
the matrix representing AB and BA−1 is

[
0 1
1 0

]
. Since BA, A−1B act the same on v,w we

conclude that AB = BA−1 for the dihedral group for = ≥ 3 (why?). �

Proposition 1.4 In �= for any = ≥ 3, BA = A−1B.

Proof Instead of doing this geometrically, we now use associativity of group ele-
ments and Proposition 1.3.

BA = (BA)4 = (BA) (B2) = B(AB)B = B(BA−1)B = B2 (A−1B) = A−1B. (1.21)

Perhaps even simpler, we note that one can multiply both sides of AB = BA−1 by A−1

from the left and A from the right,

A−1 (AB)A = A−1 (BA−1)A (1.22)

(A−1A) (BA) = (A−1B) (A−1A) (1.23)

BA = A−1B. (1.24)

This leads to the following observation: Any expression in �= in powers of A, B
can be reduced by moving A across B (left or right). When you move A past B (left
or right), change A to A−1. Of course, we already knew this from Proposition 1.2 but
now we have the computational tools to do the reductions.

Proposition 1.5 A0BA1 = A0−1B.

Proof Consider A0BA1 . Without loss of generality, assume 0, 1 > 0. Then

A0BA1 = A0B A · · · A︸︷︷︸
b terms

= A0A−1B A · · · A︸︷︷︸
b−1 terms

= · · · = A0A−1B. (1.25)

Example 1.10 Consider the following product of B, A in �= for = ≥ 3.

A5BA3B = A5A−3BB (1.26)

= A5−3B2

= A2.
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1.1.3 The Infinite Dihedral Group

Consider the real line. Define C : R → R as a translation to the right by one unit.
That is, C (G) = G + 1 for all G ∈ R. Define B : R → R to be reflection across the
origin. That is, B(G) = −G for all G ∈ R. Let �∞ be the set of functions

· · · , C−2, C−1,4, C, C2, · · · (1.27)

· · · , C−2B, C−1B,B, CB, C2B, · · · (1.28)

where 4 is the identity map and the binary operation is function composition. Note
that (B ◦ C) (G) = B(G + 1) = −G − 1 for all G ∈ R and (C−1 ◦ B) (G) = C−1 (−G) = −G − 1
for any G ∈ R. Thus, C−1 ◦ B = B ◦ C. Clearly B2 = 4 while C= ≠ 4 for any = ∈ Z. We
call �∞ the infinite dihedral group, for obvious reasons.

Remark: The infinite dihedral group hints that groups can be quite abstract and
widely applicable. Notice that the binary operation above is function composition,
and not multiplication or addition. While often the binary operation of interest is
related to multiplication or addition of some sort that we are used to, do keep mind
that we can think of any set of objects as have a group structure as long as there is a
binary operation defined on those objects which satisfies the group axioms.

1.2 What is a Ring?

Sometimes we want to consider two binary operations instead of one. Let’s call the
binary operations addition and multiplication.

Definition 1.9 A ring (', +, ·, 0) is a set with two binary operations ' × ' → ',
which we call addition and multiplication, such that

• Addition is commutative: G + H = H + G for any G, H ∈ '.
• Addition is associative: (G + H) + I = G + (H + I) for any G, H, I ∈ '.
• There exists an element in ', denote it 0, such that G + 0 = 0 + G = G for any
G ∈ '.

• For any G ∈ ', there exists a H ∈ ' such that G + H = H + G = 0. Such a H is often
denote −G.

• G(HI) = (GH)I for any G, H, I ∈ '.
• G(H + I) = GH + GI and (G + H)I = GI + HI for any G, H, I ∈ '.

Remark: The first four properties imply that ' is an abelian group under addition.
That is, (', +, 0) is an abelian group (verify this). However, the multiplication is
not necessarily abelian. Even more, ' does not necessarily have a multiplicative
identity! If it does, we call such an element an identity (or a multiplicative identity),
often denoted 1. Actually, the multiplicative identity is unique so it is not an identity
of the ring but the identity of the ring. Also, even if ' has an identity, every element
in ' is not guaranteed to have a multiplicative inverse.
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Definition 1.10 Let ' be a ring with an identity. If G ∈ ' has a multiplicative inverse,
then we say that G is a unit of the ring. That is, G is a unit if there exists H ∈ ' such
that GH = HG = 1. Often, such a H is denoted as G−1.

Definition 1.11 Let ' be a ring with identity. The set of units in ' is denoted '×.
('×, ·, 1) is a group, called the group of units of '.

Though we will focus on groups, we mention a particular type of ring that the
reader should be aware of.

Definition 1.12 A field is a commutative ring � with identity such that every G ∈ �,
G ≠ 0, has a multiplicative inverse.

For any field �, �× = � − {0}.

Example 1.11 Q,R, and C are fields. Z is not a field since most elements do not have
inverses.

Example 1.12 Z× = {1,−1} is a group under multiplication. Any other element in Z
is not a unit. For example, 2 ∈ Z requires 2 · H = 1. While H = 1

2 ∈ R would work,
1
2 ∉ Z so 2 is not a unit.

Example 1.13 Q× = Z − {0}. Every element of Q has a multiplicative inverse which
also belongs to Q, except for 0.

0 is never a unit. This is because 0 · G = G · 0 = 0 for all G.

Proposition 1.6 In any ring ', for any G ∈ ' we have 0 · G = G · 0 = 0.

Proof 0 = 0 + 0. Hence 0 · G = (0 + 0) · G.Multplication distributes:

0 · G = 0 · G + 0 · G. (1.29)

Whatever 0 · G ∈ ' is, it has an additive inverse H. Add H to both sides:

0 · G + H = (0 · G + 0 · G) + H. (1.30)

Addition is associative, so this is the same as

0 · G + H = 0 · G(0 · G + H) (1.31)
0 = 0 · G + 0 (1.32)
0 = 0 · G. (1.33)

A similar proof shows G · 0 = 0. �

Note: We will assume that 1 ≠ 0. Suppose that 1 = 0, then every G ∈ ' is 0 since

G = 1 · G = 0 · G = 0. (1.34)

While this is a legitimate ring, call it the zero ring ' = {0}, it is not too interesting
and there is not much to study about it.
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Definition 1.13 A ring ' is commutative if G · H = H · G for all G, H ∈ '.

Definition 1.14 Let ' be a commutative ring and let 0, 1 ∈ ' with 0 ≠ 0. We say
that 0 divides 1 if there exists 2 ∈ ' such that 2 = 01. If 0 does not divide 1, then
we write 0 - 1.

Compare such a definition to division in the real numbers R or the complex
numbers C. The resemblance should be clear.

Example 1.14 Z under ordinary addition and multiplication is a commutative ring
with an identity. The only units in Z are +1 and -1.

Example 1.15 Z with += (addition modulo =) and ·= (multiplication modulo =) is a
commutative ring with identity (the identity being the number 1). The set of units is
labeled Z×= .

Example 1.16 Q = { 0
1
| 0, 1 ∈ Z, 1 ≠ 0},R, and C are commuative rings with

identity.

Example 1.17 Let Z[G] be the set of all polynomials in the variable x with integer
coefficients under ordinary addition and multiplication. Then Z[G] is a ring with
identity. The polynomial 1 is the identity of Z[G] .

Example 1.18 Consider the set of all 2-by-2 matrices with entries in Z. This is a

noncommutative ring with identity
[
1 0
0 1

]
.

Example 1.19 The set 2Z (set of even integers) is a ring under ordinary addition and
multiplication. However, it has no identity. It is commutative.

Definition 1.15 Let ' be a commutative ring. Let "= (') be the set of =-by-=
matrices with entries in '. "= (') is a ring where addition is the component-wise
addition and multiplication is matrix multiplication. The zero element of "= (') is
the matrix with all 0 ∈ '. If ' has an identity element, then "= (') has an identity
element, which is the matrix with 0 ∈ ' on the off-diagonals and 1 ∈ ' along the
diagonal. Even if ' is commutative, "= (') is not necessarily commutative.

Definition 1.16 Let �!= (') be the set of =-by-= invertible matrices with entries in
a commutative ring with identity '. This is the general linear group.

Actually, if ' is a commutative ring with identity then �!= (') is the group of
units of "= ('):

�!= (') = "= (')×. (1.35)
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1.3 Subgroups

Definition 1.17 Let � be a group. A subset � ⊆ � is called a subgroup of � if �
is a group under the same group multiplication as �. If � is a subgroup of �, write
� ≤ �. If � ⊂ � is a proper subset of � and is a subgroup, write � < �.

To check that � is a subgroup of �, check:

0. � is nonempty.
1. � is closed under the binary operation of �. That is, if G, H ∈ � then GH ∈ �.
2. � is closed under inverses. That is, if G ∈ � then G−1 ∈ �.

In order to be a subgroup (or a group, for that matter), the set must be nonempty
(it must at least contain an identity element). Although this is often left implicit, we
explicitly state this as step 0 for clarity. This is called the two-step test for a subgroup.
There is also a one-step test.

Theorem 1.1 The Subgroup Criterion - A nonempty subset � of � is a subgroup of
� if and only if

0. � ≠ ∅.
1. If G, H ∈ �, then GH−1 ∈ � as well.

Proof ⇒ If � is a subgroup then 4 ∈ � and GH−1 ∈ � for ∀G, H ∈ � since it it
closed under inverses and group multiplication.
⇐ Since � ≠ ∅, pick G ∈ �. Then G(G)−1 = 4 ∈ � by 1). Also, 4(G)−1 = G−1 ∈ �
by 1). Therefore, for any G, H ∈ �, we have G, G−1, H, H−1 ∈ �. By 1), this means
G(H−1)−1 = GH ∈ �. Since 4 ∈ � and we have closure under inverses and group
multiplication, so � ≤ �. �

Example 1.20 (Z, +, 0) ≤ (Q, +, 0). Here, the binary operation is addition in the
"usual" sense. The addition of two integers is an integer. The negative of an integer
is also an integer and the additive inverse of that integer. 0 acts as the group identity
element when the binary operation is addition of numbers in the usual sense.

Example 1.21 (Q×, ·, 0) ≤ (R×, ·, 0) ≤ (C×, ·, 0). Here, the binary operation is mul-
tiplication in the "usual" sense. The multiplication of two rational numbers is a
rational number. The inverse of a rational number is a rational number. 1 acts as the
group identity element when the binary operation is multiplication of numbers in
the usual sense.

Example 1.22 In �=, the orientation-preserving symmetries (rotations) are a sub-
group of �=. For example, {4, A, A2, A3} ≤ �4.

Definition 1.18 Let ' be a commutative ring with 1 (with identity). Define

(!= (') = {� ∈ �!= (') | det(�) = 1}.

We call this the special linear group.
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Proposition 1.7 (!= (') ≤ �!= (').

Proof (!= (') is nonempty since � ∈ (!= ('). Pick �, � ∈ (!= (') and note that

det(��−1) = det(�) det(�−1) = det(�) det(�)−1 = 1 · 1 = 1. (1.36)

Thus, ��−1 ∈ (!= ('). By Theorem 1.1, (!= (') ≤ �!= ('). �

Theorem 1.2 Let � be a group. Suppose �1 ≤ � and �2 ≤ �. Then �1 ∩�2 ≤ �.

Proof Since �1 ≤ � and �2 ≤ �, we know 4 ∈ �1 and 4 ∈ �2. Therefore,
4 ∈ �1 ∩ �2 so �1 ∩ �2 is nonempty. Let G, H ∈ �1 ∩ �2. Then G, H ∈ �1 and
G, H ∈ �2. Since �1 and �2 are subgroup of �, GH−1 ∈ �1 and GH−1 ∈ �2 and, thus,
GH−1 ∈ �1 ∩ �2. �

Note: More generally, if you have a family of subgroups of � (infinite or finite)
then their intersection is still a subgroup of �.

Definition 1.19 Let � be a group and ( ⊆ � be any (nonempty) subset. A word in
( is an expression B=1

1 B
=2
2 · · · B

=:
:

where B8 ∈ (, =8 ∈ Z for all 8 = 1, 2, . . . , : and : is
finite. Let 〈(〉 be the set of all these words. (4 is the empty word.)

Example 1.23 We know that �= = 〈A, B〉 since every element of �= is A: or A: B for
some : = 0, 1, · · · , = − 1 by Proposition 1.2.

Remark: This is not unique. We also have �= = 〈A, AB〉. This is because A−1 (AB) =
B ∈ 〈A, AB〉 so any word in terms of A, B is also a word in terms of A, AB and vice-versa.

Example 1.24 Consider the Gaussian integers {0 + 18 | 0, 1 ∈ Z} where 8 =
√
−1.

This set is an (additive) subgroup of (C, +, 0) and is equal to 〈1, 8〉. See Figure 1.6.

Fig. 1.6: Gaussian integers are located at the vertices of the squares outlined by the
dotted lines.

Theorem 1.3 〈(〉 is a group.
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Proof 〈(〉 is nonempty since 4 ∈ 〈(〉. Closure is clear since a product of finite
number of elements is also finite. Also, (B=1

1 B
=2
2 · · · B

=:
:
)−1 = B

−=:
:

B
−=:−1
:−1 · · · B

−=1
1

which is also a word in S. �

Definition 1.20 〈(〉 is called the subgroup of � generated by (.

Theorem 1.4 Let � be a group. Let ( ⊆ � be some subset. Let C be the collection
of all subgroups � ≤ � such that ( ⊆ �. Then

〈(〉 =
⋂
� ∈C

�︸ ︷︷ ︸
Called the smallest subgroup of G that contains S.

.

Proof There are several things to check here.

•
⋂
� ∈C � is a subgroup since it is the intersection of subgroups. (See Theorem

1.2.)
• If we call

⋂
� ∈C � the smallest subgroup of � that contains �, then this should

make sense in English. It does because suppose  ≤ � and ( ⊆  . Then  ∈ C
so that

⋂
� ∈C � ≤  since

⋂
� ∈C � can only contain elements that are also

contained in  . This holds for arbitrary  ≤ � with ( ⊆  .
• Need to check that 〈(〉 = ⋂

� ∈C �. Note that 〈(〉 ∈ C so that
⋂
� ∈C � ⊆ 〈(〉.

Now pick any � ∈ C. Since ( ∈ � and � is a subgroup of �, � contains every
word in (. That is, 〈(〉 ⊆ � for any � ∈ C. Therefore, 〈(〉 ⊆ ⋂

� ∈C �.

What this shows is that the subgroup generated by ( ⊆ � and the intersection of all
the subgroups of � that contain ( are the same notions. �

Definition 1.21 A group � is cyclic if it is generated by one element. That is, � is
cyclic if there exists some element G ∈ � such that � = 〈G〉.

Example 1.25 (Z, +, 0) is cyclic with generator 1. However, we note that −1 is also
a generator so we see that generators are not, in general, unique. (They are unique in
some cases, like for Z2.)

Example 1.26 (Z×7 , ·, 1) is cyclic and generated by 3. That is, Z
×
7 = 〈3〉. (Verify this!)

Let’s set up some notation. Z= without the × means (Z=, +, 0) or the ring. Z×= is
the multiplicative group of units.

1.4 Ordering

Let us consider sets with an ordering relation.

Definition 1.22 Let N = the set of natural numbers = {G ∈ Z | G ≥ 0}.
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Definition 1.23 Let ( ⊆ N. We say that an element B ∈ ( is a least element of ( if
for any other element C ∈ (, B ≤ C.

Example 1.27 Let ( = {G ∈ N | G ≥ 10 and G is odd}. Then 11 is the least element
of (.

Definition 1.24 A set with < is well-ordered if every nonempty subset of it has a
least element.

Example 1.28 Z is ordered but not well-ordered. For example, the subset of all
negative elements of Z has no least element. There are many subsets of Z that have
no least element.

Axiom for us: N is well-ordered. Actually, induction can be proved from well-
ordering and vice-versa, depending on which one is taken as the axiom. Since it
is a useful mathematical proof technique, we remind the reader what mathematical
induction is. Mathematical induction says that if we are given statements ((=) such
that for every integer = ≥ 1 integer

i) ((1) is true (called the base case),
ii) ((=) is true implies that ((= + 1) is true,

then ((=) is true for every = ≥ 1. Here is a classic example.

Example 1.29 What is the sum of the first 100 positive integers? We can do even
better and prove a formula for general =:

=∑
:=1

: = 1 + 2 + · · · + = = =(= + 1)
2

. (1.37)

for any = ∈ Z+. We note that the formula holds for = = 1 (always start by proving a
base case). Suppose that the formula holds for =. Then

1 + 2 + · · · + = + (= + 1) = =(= + 1)
2

+ (= + 1) (1.38)

=
=(= + 1) + 2(= + 1)

2

=
=2 + 3= + 2

2

=
(= + 1) (= + 2)

2

=
(= + 1) ((= + 1) + 1)

2
,

so the formula also holds for =+1. By mathematical induction, the formula holds for
all integers = ≥ 1. Using this, we find that the sum of the first 100 positive integers
is 100·101

2 = 50 · 101 = 5050.
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Example 1.30 {G | G ∈ Q, G ≥ 0} is not well ordered. Suppose it was and let H ∈ Q
be the least element. But H2 ∈ Q and H

2 < H, contradicting our choice of H. Therefore,
Q is not well-ordered.

Knowing that N is well ordered, we can prove another theorem.

Theorem 1.5 Every subgroup of (Z, +, 0) is a cyclic subgroup.

Proof Since (Z, +, 0) has addition as the binary operation, it is natural to use the
additive notation here. Let � be a subgroup of (Z, +, 0). If � = {0}, then � is clearly
cyclic. Suppose � ≠ {0}. Pick G ∈ � with G ≠ 0. Since G ∈ �, then −G ∈ � since �
is a subgroup and hence closed under inverses. One of −G, G is positive. Thus, there
is at least one positive integer in �. Pick the smallest positive integer in �, call it =.
This is possible by the well-ordering of N. We want to show that � = 〈=〉. For any
0 ∈ �, we can use the division algorithm to write 0 = @= + A where 0 ≤ A < = (and
@= means do the additive operation @ times). Since � is a subgroup, we also have
@= ∈ �, −@= ∈ �, and 0 − @= ∈ �. But 0 − @= = A. Thus, A ∈ �. But 0 ≤ A < = and
we get a contradiction for the choice of = (the smallest positive integer in �) unless
A = 0. Thus, 0 ∈ � is 0 = @=. But 0 ∈ � was arbitrary. Therefore, � = 〈=〉, a cyclic
subgroup of �. �

Using the above, one can show that any subgroup of a cyclic group is cyclic.

Theorem 1.6 Let � be a cyclic group. Then every subgroup  ≤ � is cyclic.

Proof Let G be a generator of�, so� = 〈G〉. Every element of� or  can be written
as G= for some = ∈ Z. Let

� = {= ∈ Z | G= ∈  }. (1.39)

We alert the reader that we are using multiplicative notation for� and  but additive
notation for �. � is a subgroup of (Z, +, 0) since

=, < ∈ � ⇒ G=, G< ∈  (1.40)
⇒ G=−< ∈  (closure under inverses and multiplication) (1.41)
⇒ = − < ∈ � (definition of �). (1.42)

By Theorem 1.5, � is cyclic, say � = 〈0〉. Therefore,  is cyclic, with  = 〈G0〉. �

Theorem 1.7 Let � be a group and let 6 be an element of order = in �. If 6: = 4,
then = divides : .

Proof By the division algorithm, : = @= + A for some integers @, A with 0 ≤ A < =.
Therefore, 4 = 6: = 6@=+A = (6=)@6A = 6A , which contradicts that |6 | = = > A if
A > 0. Thus, A = 0 so : = @=, and so = divides :. �

Theorem 1.8 Let 6 be an element of order =. Let : be a positive integer. Then
〈6:〉 = 〈6gcd(=,:)〉 and |6: | = =

gcd(=,:) .
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Proof Define 3 = gcd(3, :) to clean up the notation. Then : = 3A for some positive
integer A. Since 6: = (63)A , this means 〈6:〉 ⊆ 〈63〉. Also, there exist integers B, C
such that 3 = =B+ :C. So, 63 = 6=B+:C = 6=B6:C = (6=)B (6: )C = (6: )C ∈ 〈6:〉. Thus,
〈63〉 ⊆ 〈6:〉. Combining both subset inequalities, we conclude 〈6:〉 = 〈6gcd(=,:)〉.

Now let 3 be any divisor of = and not just a gcd. Consider the element 63 . This has
order equal to |63 | = =/3 for any divisor of =. To see this, note that (63)=/3 = 6= = 4
so the order satisfies |63 | ≤ =/3. Now we need to show the inequality in the other
direction. Suppose 1 is a positive integer less than =/3. Then (63)1 = 631 ≠ 4

because otherwise, since 31 < =, this would contradict that |6 | = = (= must be the
smallest such positive power where 6= = 4). Thus, |63 | ≥ =/3. Combining the two
inequalities yields |63 | = =/3. �

Problems

1.1 Let G, H be any element of a group �.

a) Prove that (GH)−1 = H−1G−1.
b) Prove or disprove: (GH)−1 = G−1H−1 in general.

1.2 Let � be a group. Prove that GH = HG if and only if H−1GH = G if and only if
G−1H−1GH = 4 for ∀G, H ∈ �.

1.3 Let � be a group. Show that 6 and 6−1 have the same order for ∀6 ∈ �.

1.4 Consider (R − {−1},�) where the binary operation

� : (R − {−1}) × (R − {−1}) → (R − {−1})

is defined by

G � H = GH + G + H

for all G, H ∈ R − {−1}. The right-hand side means the "usual" multiplication and
addition in R.

a) Show that (R − {−1},�) is an abelian group. What is the identity element?
b) Solve for G:

2 � G � G = 11.

1.5 Let � be a group. Let G, H ∈ � be arbitrary. Show that |G | = |HGH−1 |. Conclude
that |GH | = |HG | for ∀G, H ∈ �.

1.6 Let � be a group. Let G, H ∈ �. Suppose that G, H, GH each have order 2. Prove
that GH = HG.

1.7 Let � be a group. Prove that if 62 = 4 for ∀6 ∈ � then � is abelian.
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1.8 Let � be a group and let G, H ∈ � be commuting elements. That is, GH = HG.

Prove that (GH)= = G=H= for any = ∈ Z.

1.9 a) Let G ∈ � be arbitrary. Suppose that |G | = = and that G: = 4. Prove that =
divides :.

b) Let G ∈ � be such that G2 ≠ 4 and G6 = 4. Prove that G4 ≠ 4 and G5 ≠ 4. What
can be said about the order of G?

1.10 a) Let = be an integer. Prove that

(G · H (mod =)) · I (mod =) = G · (H · I (mod =)) (mod =).

b) Let ? be a prime number and let G be an integer which satisfies 1 ≤ G ≤ ? − 1.
Show that none of G, 2G, · · · , (? − 1)G is a multiple of ?. Deduce the existence
of an integer I such that 1 ≤ I ≤ ? − 1 and GI = 1 (mod ?).

c) Using the previous parts, convince yourself that when = is a prime, the numbers
{1, 2, · · · , = − 1} with a binary operation of multiplication modulo = forms a
group.

d) What goes wrong when = is not a prime number?

1.11 An element G of a group satisfies G2 = 4 if and only if G = G−1. Show that a
finite group of even order has an odd number of elements of order 2.

1.12 Recall that �!= (R) is the group of = × = invertible matrices � such that both
� and �−1 have entries in R.

a) Show that �!1 (R) is abelian.
b) Show that �!= (R) is non-abelian for any = ≥ 2.
c) In linear algebra, � and (�(−1 are similar matrices. In group theory, we say
(�(−1 is a conjugate of �. The conjugacy class of � is {(�(−1 |S is invertible}.
Let _1, · · · , _= be distinct nonzero real numbers. Let � be the = × = matrix with
_1, · · · , _= down the diagonal and 0 everywhere else. Think back to your linear
algebra course, then fill in the blank: the conjugacy class of � in �!= (R) is
exactly the set of matrices whose characteristic polynomial .

1.13 Which elements of the infinite dihedral group have finite order? Do these
elements form a subgroup of �∞?

1.14 Let � be a group.

a) Let � = {6 ∈ � | 6 has finite order}. If � is abelian, show that � is a subgroup
of �. It is called the torsion subgroup of �.

b) Define � as before, but suppose that � is not abelian. Show by example that �
may not be a subgroup. (Hint: Consider �∞ and Problem 1.13.)

1.15 a) In �4, let ℎ be the reflection in a horizontal line, and let 3 be the reflection
in one of the corner-to-corner diagonals. What is 〈ℎ, 3〉?

b) Find a subgroup � = 〈A1, A2〉 where A1 and A2 are reflections and |� | = 4.
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1.16 Show that (Q, +, 0) is not cyclic. Even better, show that it cannot be generated
by a finite number of elements.

1.17 What is the sum of the square of the first = natural numbers? That is, find the
expression in

=∑
:=1

:2 = [some expression involving =] .

(Hint: Work out the sum for = = 1, 2, 3, . . . until you see a pattern. Guess a formula
that agrees with your work. Use induction to prove that it holds for all positive
integers =.)

1.18 Suppose 0, 1 ∈ Z are not both zero.

a) Let � = {_0 + `1 | _, ` ∈ Z}. Show that � is a subgroup of (Z, +, 0).
b) Let 3 be the smallest positive integer in �. Then 3 = gcd(0, 1) is the greatest

common divisor of 0 and 1. (Consequently, the greatest common divisor of two
integers 0, 1 can always be written as a linear combination gcd(0, 1) = _0 + `1
with integer coefficients.)

1.19 Suppose �is a group and 0, 1 ∈ � have the property that 16 = 4 and 01 = 140.
Show that the order of 1 is at most 3 and that 01 = 10. (Hint: consider 010−1.)

1.20 a) Prove that no group is the union of two proper subgroups.
b) Can a group be the union of three proper subgroups?





Chapter 2
The Euclidean Algorithm and the Chinese
Remainder Theorem

Abstract Before proceeding with group theory, we go over some properties of
numbers to help us consider more sophisticated groups.

2.1 The Euclidean Algorithm

Definition 2.1 Let 0, 1 ∈ Z, with 1 ≠ 0. We say 1 is a divisor (or a factor) of 0 if
∃2 ∈ Z such that 1 · 2 = 0. In this case, we write 1 | 0 (read "b divides a"). If 1 is
not a divisor (or a factor) of 0, we write 1 - 0 (read "b does not divide a").

Example 2.1 We have 5 | 60 since 5 · 12 = 60.

Definition 2.2 Let 1, 2 ∈ Z. A common divisor (also called a common factor) of 1, 2
is an G ∈ Z such that G | 1 and G | 2. The greatest common divisor (gcd) (also called
the highest common factor (hcf)) is the greatest of the common divisors.

Example 2.2 Let 1 = 2019 and 2 = 249. Then 249 = 3 · 83 and 2019 = 3 · 673. But
83 is prime and 83 - 2019. Thus, gcd(1, 2) = 3.

However, this approach is not practical all the time. If 1, 2 are large then finding
the prime factorization is too hard. Also, one can do even better than just finding
gcd(1, 2). If 3 = gcd(1, 2) then one can find B, C ∈ Z such that 3 = B1 + C2. This is
the idea of the Euclidean algorithm. Idea: Input 1, 2 ∈ Z not both zero and get as
outputs 3 ∈ Z with 3 > 0 and B, C ∈ Z such that 3 = gcd(1, 2) and 3 = B1 + C2.
Before proving the Euclidean algorithm, we will need the following lemma.

Lemma 2.1 If 1 = 2@ + A then the set of common divisors of 1, 2 equals the set of
common divisors of 2, A .

Proof ⇒ Let G be a common divisor of 1, 2. This means there ∃H, I ∈ Z such that
GH = 1 and GI = 2. Therefore A = 1 − 2@ = GH − GI@ = G(H − I@). But H − I@ ∈ Z so
G | A .

25
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⇐ Let G be a common divisor of 1, A. This means there ∃G, I ∈ Z such that GH = A
and GI = 2. Therefore 1 = 2@ + A = GI@ + GH = G(I@ + H). But I@ + H ∈ Z so G | 1.�

Corollary 2.1 If 1 = 2@ + A , then gcd(1, 2) = gcd(2, A).

Proof By Lemma 2.1, 1, 2 and 2, A have the same set of common divisors and,
therefore, also the same greatest common divisor. �

Theorem 2.1 The Euclidean algorithm relies on iterating the division algorithm.
Initially, 1 = 2@1 +A1 where without loss of generality we let 2 ≠ 0 and 2 > 0. Divide
1 by 2. This gives a remainder A1. Divide 2 by A1. This gives a remainder A2. Diving
A1 by A2 and get a remainder A3. Keep diving A: by A:+1 until the remainder A#+1 is
0. This is more clear when written as follows:

1 = @12 + A1 0 ≤ A1 < 2

2 = @2A1 + A2 0 ≤ A2 < A1

A1 = @3A2 + A3 0 ≤ A3 < A2

...
...

A#−2 = @# A#−1 + A# 0 ≤ A# < A#−1

A#−1 = @#+1A# + 0.

A# is the greatest common divisor 3 = gcd(1, 2) we seek.

Proof Using the lemma, we know that

gcd(1, 2) = gcd(2, A1)
gcd(2, A1) = gcd(A1, A2)

gcd(A1, A2) = gcd(A2, A3)
...

gcd(A#−2, A#−1) = gcd(A#−1, A# )
gcd(A#−1, A# ) = gcd(A# , 0)

= A#

(2.1)

This works because # < ∞ since each remainder A: is strictly less than the previous
remainder A:−1, so the algorithm eventually terminates. �

Proposition 2.1 Given 1, 2 ∈ Z and 3 = gcd(1, 2), then there exist B, C ∈ Z such that
3 = B1 + C2. We sometimes says that 3 is a Z-linear combination of 1, 2.

Proof This is really just a consequence of Theorem 2.1. One just needs to backsolve.
Using the notation of Theorem 2.1, we have

3 = A# = A#−2 − @# A#−1. (2.2)
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But, we also have

A#−1 = A#−3 − @#−1A#−2, (2.3)

so we have

3 = A# = A#−2 − @# (A#−3 − @#−1A#−2). (2.4)

But A#−3 = A#−4−@#−2A#3 and so on. Eventually we can get rid of all the remainders
until we are left with an expression involving 1 and 2. This will end up looking
something like

3 = (#)1 + (#)2,

where the numbers multiplying 1, 2 are some combinations of @1, @2,· · · , @# , A1,
A2,· · · , A# in such a way that still belongs to Z (this is because we only add, subtract,
andmultiply numbers in Z so the result is still in Z). These are the B, C that we claimed
exist. �

Example 2.3 Let 1 = 96 and 2 = 44

96 = 2 · 44 + 8 (2.5)
44 = 5 · 8 + 4 (2.6)
8 = 2 · 4 + 0. (2.7)

Thus, we have 4 = gcd(96, 44) since it is the last nonzero remainder. Backsolving,
we have

4 = 44 − 5 · 8 (2.8)
= 44 − 5 · (96 − 2 · 44)
= −5 · 96 + 11 · 44
≡ B · 1 + C · 2,

so we see that B = −5 and C = 11. Indeed, use your favorite calculator (or work it out
manually) to verify that

4 = (−5 · 96) + (11 · 44). (2.9)

Example 2.4 Let 1 = 2019 and 2 = 249

2019 = 8 · 249 + 27 (2.10)
249 = 9 · 27 + 6 (2.11)
27 = 4 · 6 + 3 (2.12)
6 = 2 · 3 + 0. (2.13)
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Thus,we have 3 = gcd(2019, 249) since it is the last nonzero remainder. Backsolving,
we have

3 = 27 − 4 · 6 (2.14)
= 27 − 4 · (249 − 9 · 27)
= 27 − 4 · 249 + 36 · 27
= 37 · 27 − 4 · 249
= 37 · (2019 − 8 · 249) − 4 · 249
= 37 · 2019 − (37 · 8) · 249 − 4 · 249
= 37 · 2019 − 300 · 249
≡ B · 1 + C · 2,

so we see that B = 37 and C = −300. Indeed, use your favorite calculator (or work it
out manually) to verify that

3 = (37 · 2019) + (−300 · 249). (2.15)

Comment: We underline some numbers (the remainders that appeared in the Eu-
clidean division algorithm, actually) in the work only as a guide for our eyes so
we know what it is that we are trying to keep and what can be multiplied out and
simplified. Work out Problem 2.1 and/or Problem 2.2 to try this yourself.

In closing, we mention some useful tips for later chapters for proving theorems
or solving problems. In Chapter 6 we prove that gcd(<, =) · lcm(<, =) = <=.

The division algorithm, the Euclidean algorithm, gcd(<, =) · lcm(<, =) = <=, and
properties of modular addition and modular multiplication are very useful when
dealing with groups such as Z=,Z<=,Z<×Z= (we didn’t cover what Z<×Z= means,
yet. This is done is Chapter 6). Train yourself to recognize trigger words or phrases so
that your brain searches your neural network for the things just mentioned whenever
you read something similar to the following:

• "Let < and = be positive integers such that < is a factor of =. Show that Z=
. . . [some statement involving <, =, or < and =]." In such cases, consider using
the division algorithm, and maybe take mod = or mod < of equations you write
down to see if that somehow lead to the proof/solution.

• "Let < and = be relatively prime. Show that Z< × Z= . . . [some statement
involving <, =, or < and =]." In such cases, note that relatively prime means
gcd(<, =) = 1 which, by Proposition 2.1, means that there exist integers B, C
such that 1 = B< + C=. You might then consider taking mod = or mod < of this
and see if its somehow useful. The problem might also state another assumption
that, in conjunction with 1 = B< + C=, completes the proof/solution or provides
a part of the proof/solution.

• "Show that any element in [some statement involving some combinations of
Z=,Z<] can be written as . . . [some statement involving <, =, or < and =]."
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Problems

2.1 a) Find the greatest common divisor 3 of 1819 and 3587. Also, find B, C ∈ Z
such that

3 = 1819B + 3587C.

Compute this by hand, showing all your work.
b) Find the order of the subgroup 〈1819〉 in (Z3587, +, 0).

2.2 a) Find the greatest common divisor 3 of 1665 and 2019. Also, find B, C ∈ Z
such that

3 = 1665B + 2019C.

Compute by hand, showing all your work.
b) Find the order of the subgroup 〈1665〉 in (Z2019, +, 0).

2.3 Find the multiplicative inverse of 19 (mod 287). Please check your work.

2.4 Solve the equation 61G + 5 = 7 (mod 127). Please check your work.





Chapter 3
Permutations

Abstract This chapter is about permutations, a convenient notation for permutations,
and some general properties of permutations that will be useful throughout the text.

3.1 Permutations

Definition 3.1 A function 5 : - → . is invertible if there exists a function 6 : . →
- such that 6 ◦ 5 = id- and 5 ◦ 6 = id. .We say that 6 is the inverse of 5 and often
write 6 as 5 −1.

Definition 3.2 A function 5 : - → . is injective if, whenever G1, G2 ∈ - and
5 (G1) = 5 (G2) then G1 = G2.

Definition 3.3 A function 5 : - → . is surjective if for any H ∈ . there exists at
least one G ∈ - such that 5 (G) = H.

Definition 3.4 A function 5 : - → . is bijective if it is injective and surjective.

It is proven in standard books/courses that a function is invertible if and only if it
is bĳective.

Let - be a set.

Definition 3.5 A permutation of - is a bĳective function from - to -.

Proposition 3.1 Let (- be the set of all permutations of -. Then (- is a group when
the binary operation is function composition. We call (- the symmetric group on -.

Proof The identity map is bĳective and so belongs to (- . Bĳective functions have
inverses, and those inverses are bĳective as well. Function composition is associative.
Hence, (- is indeed a group. �

Definition 3.6 Suppose that - is a set of = objects. For example, suppose - = {1, 2,
. . . , =}. Instead of defining -,mentioning that |- | = =, and writing (- it is common
practice to write (=.

31
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Any set - with = objects has a bĳection with the set {1, 2, . . . , =} so one can,
without loss of generality, think of permutations of = objects in terms of permutations
of the numbers 1, 2, . . . , = and use the (= notation. That said, in some settings with
abstract sets - it is more clear to just use - and (- .

Proposition 3.2 The order of (= is =!.

Proof We must count how many bĳective functions exist on a set of = elements.
Let f be a permutation, and let us count how many different ways we can define f.
Let us define f(1) first. We are free to assign f(1) any value from = elements. Pick
a value and fix f(1) to that value. Let us now define f(2). Since f(1) is already
defined and f must be injective (it is bĳective and, in particular, injective), we only
have = − 1 values to choose from to assign to f(2). Proceeding all the way to f(=),
we see that there are = · (= − 1) · · · 2 · 1 = =! ways to define a bĳective function from
a set of = elements to itself. Therefore, |(= | = =!. �

The set (- is a collection of bĳective functions. When - is finite, the bĳective
functions are then not continuous functions but are instead defined explicitly by how
they act on the elements of -. For example, suppose that - = {1, 2, 3}. Consider f
defined by

f(1) = 3, f(2) = 1, f(3) = 2. (3.1)

This is 1-to-1 and onto, so f ∈ (- . It is easy in this specific case to write out f(G)
for all G ∈ -, but what if - consists of 1000 elements?What if |- | = 1000 butf only
permutes a few elements in -? It seems like a more efficient notation is needed to
describe f ∈ (- . A convenient notation is the cycle notation, introduced by Cauchy.

3.2 Cycle Notation

Definition 3.7 A :-cycle is a string of integers which are cyclically permuted
amongst each other and where the integers not in the string are left fixed. A :-
cycle is written as (01 02 · · · 0: ).

Definition 3.8 A 2-cycle is also called a transposition.

This notation is easier to explain with examples.

Example 3.1 Consider (3 and f ∈ (3 defined by

f(1) = 3, f(2) = 1, f(3) = 2. (3.2)

This can also be denoted as f = (1 3 2). This can be read as "f sends 1 to 3, sends
3 to 2, and sends 2 to 1."
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Example 3.2 Consider (4 and f ∈ (4 defined by

f(1) = 2, f(2) = 4, f(3) = 3, f(4) = 1. (3.3)

This can be denoted as f = (1 2 4). This can be read as "sigma sends 1 to 2, sends
2 to 4, and sends 4 to 1." One can write f = (1 2 4) (3), which would be read as "f
sends 1 to 2, sends 2 to 4, and sends 4 to 1. f sends 3 to 3." However, elements that
are fixed are usually omitted and it is understood that omitted elements are fixed.

Example 3.3 Consider (8 and suppose that

f(1) = 3, f(2) = 1, f(3) = 4, f(4) = 2, (3.4)
f(5) = 8, f(6) = 5, f(7) = 7, f(8) = 6.

This is written in cycle notation as f = (1 3 4 2) (5 8 6). Again, the 7 may be omitted
in this notation since f(7) = 7.

Note: It is important to remember the compositions of permutations are read from
right to left. Likewise, products of cycles should be read from right to left.

Example 3.4 Consider (8 and suppose that

f = (1 7 8 5 4 6) (2 3). (3.5)

What would this look like written out explicitly in function form? Convince yourself
that the cycle notation above is the same as:

f(1) = 7, f(2) = 3, f(3) = 2, f(4) = 6, (3.6)
f(5) = 4, f(6) = 1, f(7) = 8, f(8) = 5.

Definition 3.9 Two cycles are said to be disjoint if they do not have any ele-
ments/numbers in common.

Example 3.5 Consider (6 and suppose U = (1 2 4) and V = (5 4 6). They are not
disjoint cycles since 4 appears in U and in V.

In previous examples, we considered products of cycles that were disjoint. What
if they are not disjoint?

Example 3.6 Consider (5 and suppose U = (1 2 4) and V = (1 2 4 5). What is UV?
The composition of permutations should be read right to left. Then UV is written as

UV = (1 2 4) (1 2 4 5) = (1 4 5 2). (3.7)

Why? Consider the number 1. We want (UV) (1) = U(V(1)). Act on it by V =

(1 2 4 5). But V = (1 2 4 5) sends 1 to 2. Then V(1) = 2 is plugged into U. But U
sends 2 to 4. Therefore, UV(1) = 4. Then we ask what UV does to 4. Act on 4 by V.
V = (1 4 5 2) sends 4 to 5. Then U acts on V(4) = 5. But U = (1 2 4) does nothing
to 5. Therefore, (UV) (4) = 5. Continuing the argument gives the expression for UV
above.
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Theorem 3.1 Every permutation in (= can be written as a product of disjoint cycles.

Proof This follows from bĳectivity and from the fact that - is finite. Let - = {1,
2, · · · , =}. Pick an U ∈ (=. Pick 01 ∈ - and define 02 ≡ U(01), 03 ≡ U2 (02),
· · · U=+1 ≡ U= (01). Since - is finite, 01, 02, · · · , 0=+1 cannot all be distinct (after
all, - has only = elements). Suppose U 9 (01) = U: (01) (that is, 0 9+1 = 0:+1) and
take, WLOG, : ≥ 9 . Since U is bĳective and, in particular injective, U−1 exists so
U 9 (01) = U: (01) implies 01 = U

:− 9 (01) = 0:− 9+1.We can then write

U = (01 02 · · · 0:− 9 ) · · · (3.8)

where we write · · · at the end because it is possible that : − 9 ≠ =. That is, it is
possible that U is not an =-cycle. If it is not an = cycle, pick 11 ∈ - that is not
one of 01, 02, · · · , 0:− 9 . Now define 12 ≡ U(11), 13 ≡ U2 (11), · · · 1=+1 ≡ U= (11).
By the same argument, there exists some : ′, 9 ′ where, WLOG, : ′ ≥ 9 ′ and 11 =
U:
′− 9′ (11) = 1:′− 9′+1. This means that U now looks like

U = (01 02 · · · 0:− 9 ) (11 12 · · · 1:′− 9′) · · · . (3.9)

Proceed this way until all the numbers {1, 2, · · · , =} appear in a cycle. In the end,
drop the 1-cycles. This then gives a disjoint cycle decomposition of U. �

Theorem 3.2 Disjoint cycles commute. That is, let U = (01 02 · · · 0A ) and V =
(11 12 · · · 1B) where no number in {01, 02, · · · , 0A } is equal to any number in {11,
12, · · · , 1B}, then UV = VU.

Proof The theorem should be intuitively clear. Suppose U, V are disjoint. We expect
that it shouldn’t matter if you move objects specified by U and then move objects
specified by V, or if you choose to move objects specified by V and then move objects
specified by U if none of the objects they specified are the same. That is, UV = VU.
We include a formal proof of this intuition.

To show that two functions are equal, one must show that they agree on all inputs
to the functions. Therefore, we must show that UV(G) = VU(G) for any G ∈ - = {1,
2, · · · , =}. There are three cases to consider.

• Suppose G ∈ {01, 02, · · · , 0A }. Then G = 0: for some : ∈ {1, 2, · · · , A}. Then

UV(G) = UV(0: ) = U(0: ) = 0:+1 (3.10)
VU(G) = VU(0: ) = V(0:+1) = 0:+1 (3.11)

If : = A, then 0:+1 = 0A+1 is interpreted to be 0A+1 = 01. That is, the subscript
should really be understood with modular meaning. Therefore, UV(G) = VU(G)
for G ∈ {01, 02, · · · , 0A }.

• Suppose G ∈ {11, 12, · · · , 1B}. Then G = 1: for some : ∈ {1, 2, · · · , B}. Then

UV(G) = UV(1: ) = U(1:+1) = 1:+1 (3.12)
VU(G) = VU(1: ) = V(1: ) = 1:+1 (3.13)
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If : = B, then 1:+1 = 1B+1 is interpreted to be 1B+1 = 01. That is, the subscript
should really be understood with modular meaning. Therefore, UV(G) = VU(G)
for G ∈ {11, 12, · · · , 1B}.

• If G ∉ {01, 02, · · · , 0A } and G ∉ {11, 12, · · · , 1B}, then

UV(G) = U(G) = G (3.14)
VU(G) = V(G) = G. (3.15)

Combining the three cases, we see that UV(G) = VU(G) for any G ∈ -. Therefore, as
claimed, disjoint cycles commute. �

Example 3.7 Non-disjoint cycles usually don’t commute. Consider (3 and the ele-
ments (1 2 3) and (1 2).

(1 2 3) (1 2) = (1 3) (3.16)
(1 2) (1 2 3) = (2 3) (3.17)

Therefore, (1 2 3) (1 2) ≠ (1 2) (1 2 3).

Actually, convince yourself that the above example proves that (= is non-abelian
for = ≥ 3. If = = 2, then (= = (2 = {4, (1 2)} which is clearly abelian. If = = 1, then
(= = (1 = {4} is just the trivial group, which is also clearly abelian.

Theorem 3.3 Let U ∈ (= be a :-cycle. Then |U | = :.

Proof Left to reader. �

Theorem 3.4 Let U = (01 02 · · · 0: ) be a :-cycle in (=. Then

U−1 = (0: 0:−1 · · · 01).

Proof Note that

(01 02 · · · 0: ) (0: 0:−1 · · · 01) = 4 (3.18)

and

(0: 0:−1 · · · 01) (01 02 · · · 0: ) = 4. (3.19)

Corollary 3.1 For any U ∈ (=, we may decompose it into a product of disjoint cycles
U = U1 · · · U<. Then U−1 = U−1

< · · · U−1
1 and we can apply the previous theorem to

each disjoint cycle individually to find a disjoint cycle decomposition of U−1.

Remark: Note that cycles are the same under a cyclic "rotation":

(01 02 · · · 0: ) = (0: 01 · · · 0:−1) = · · · = (02 03 · · · 01). (3.20)

Example 3.8 Let U = (1 2 3) = (2 3 1) = (3 1 2).
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1 2

3

Then U−1 = (3 2 1) = (1 3 2) = (2 1 3).

1 2

3

Example 3.9 Let U = (1 5 2 9) (6 8 4) (3 7).

1 5

9 2

6 8

4

3

7

Then U−1 = (7 3) (4 8 6) (9 2 5 1).

1 5

9 2

6 8

4

3

7

Theorem 3.5 Let U = (01 02 · · · 0: ) be a :-cycle in (=. For any V ∈ (=, VUV−1 is
the cycle where each 08 is replaced by V(08) for 8 = 1, 2, · · · , : . That is,

VUV−1 = V(01 02 · · · 0: )V−1 = (V(01) V(02) · · · V(0: )).

Proof Pick an G ∈ {1, 2, · · · , =}.

• Consider the case where there is some 08 such that G = V(08). Then

VUV−1 (V(08)) = VU(08) = V(08+1), (3.21)

where the subscript has a modulo interpretation.
• Consider the case where there is no 08 such that G = V(08). Since V is a bĳection,
there exists some H such that G = V(H) but where, in this case, H ∉ {01, 02, · · · ,
0: }. Then

VUV−1 (V(H)) = VU(H) = V(H) = G. (3.22)

This shows that if · · · 08 08+1 · · · appears somewhere in the cycle of U then
· · · V(08) V(08+1) · · · appears in the cycle decomposition of VUV−1. �

Corollary 3.2 If f is a product of cycles f = U1U2 · · · U< then

VfV−1 = VU1V
−1VU2V

−1 · · · VU<V−1,
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so we can apply the previous theorem to each U8 for 8 = 1, · · · , <. Therefore, once
one hasf, all one has to do to get VfV−1 is replace each G in the cycle decomposition
of f by V(G).

Example 3.10 Let f = (1 5 2 6 3) (4 7 8) and V = (1 3 5) (2 4 6). Then

VfV−1 = (3 1 4 2 5) (6 7 8). (3.23)

Another notation is a two-line notation:

f =

(
1 · · · =

f(1) · · · f(=)

)
where an element in the top row is center to the element in the bottom row directly
beneath it.

Example 3.11 Consider f = (1 5 2 6 3) (4 7 8) and f ∈ (8. In the two-line notation
this is (

1 2 3 4 5 6 7 8
5 6 1 7 2 3 8 4

)
. (3.24)

One can prove Corollary 3.2 using the two-line notation. Take any two permuta-
tions f, V ∈ (=. Then

f =

(
1 · · · =

f(1) · · · f(=)

)
, V =

(
1 · · · =

V(1) · · · V(=)

)
. (3.25)

Note that

V =

(
1 · · · =

V(1) · · · V(=)

)
=

(
f(1) · · · f(=)
V(f(1)) · · · V(f(=))

)
, (3.26)

V−1 =

(
V(1) · · · V(=)

1 · · · =

)
. (3.27)

Therefore,

VfV−1 =

(
1 · · · =

V(1) · · · V(=)

) (
1 · · · =

f(1) · · · f(=)

) (
V(1) · · · V(=)

1 · · · =

)
(3.28)

=

(
f(1) · · · f(=)
V(f(1)) · · · V(f(=))

) (
1 · · · =

f(1) · · · f(=)

) (
V(1) · · · V(=)

1 · · · =

)
=

(
V(1) · · · V(=)

V(f(1)) · · · V(f(=))

)
.

Theorem 3.6 Let U ∈ (=. Write U as a product of disjoint cycles U = U1U2 · · · U: .
Then |U | = lcm( |U1 |, |U2 |, · · · , |U: |).

Proof This is Problem 3.1. �
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Example 3.12 True or false: (5 has an element of order 6. The answer is true.
Consider U = (1 2 3) (4 5). Then |U | = lcm(3, 2) = 6.

Suppose that one didn’t know Theorem 3.6. Then

U: = ((1 2 3) (4 5)): (3.29)

= (1 2 3): (4 5): (disjoint cycles commute)

For U: = 4 to hold, we need (1 2 3): = 4 and (4 5): = 4 to hold simultaneously.
This holds if and only if the order of (1 2 3) divides : and the order of (4 5) divides
: (why?). The least such positive : for which this is true is 6.

Remark: As a friendly reminder, it is not enough (in any group, not just (=) to
demonstrate that G= = 4 and then conclude that |G | = =. This is because the order of
an element G in a group � is defined as the least positive integer = for which G= = 4.
As a silly example, (1 2)4 = 4 but we know that (1 2) has order 2, not order 4. To
have an air-tight argument you must show that G= = 4 and argue that = is the least
such positive integer.
Proposition 3.3 (= has =(=−1)

2 distinct transpositions.
Proof A transposition looks like (01 02) for some 01, 02 with 01 ≠ 02. Let us fix 01
first. There are = choices for 01. Once 01 is chosen, 02 is left with = − 1 options. It
seems like the total is =(=−1).However, (01 02) = (02 01) so we must divide by 2 to
count only the distinct transpositions. Thus, there are =(=−1)

2 distinct transpositions
in (=. �

Reminder: More generally, it is true that

(01 02 · · · 0: ) = (0: 01 · · · 0:−1) = · · · = (02 03 · · · 01). (3.30)

When counting how many distinct :-cycles there are in (=, it is important to keep
this in mind so as to not overcount. See Problem 3.8.
Lemma 3.1 Let U ∈ (= be a :-cycle for some : ∈ {1, 2, · · · , =}. Then U =

(01 02 · · · 0: ). We claim that

(01 02 · · · 0: ) = (01 02) (02 03 · · · 0: ).

Proof Check if the left side agrees with the right side. It does. �

Theorem 3.7 Any :-cycle can be written as a product of : − 1 transpositions.
Proof Use induction/iteration of Lemma 3.1. That is, if U = (01 02 · · · 0: ), then
the lemma allows us to conclude that

U = (01 02 · · · 0: ) = (01 02) (02 03 · · · 0: ) (3.31)
= (01 02) (02 03) (03 04 · · · 0: )
...

= (01 02) (02 03) · · · (0:−1 0: ).



3.2 Cycle Notation 39

Actually, a lemma similar to Lemma 3.1 can be used to prove that

U = (01 02 · · · 0: ) = (01 0: ) (01 · · · 0:−2 0:−1) (3.32)
= (01 0: ) (010:−1) (01 · · · 0:−2 0:−3)
...

= (01 0: ) · · · (01 03) (01 02).

In either case, we have written the :-cycle U as product of : − 1 transpositions. �

The proof is clear, but let us suppose that you were given the equality

(01 02 · · · 0: ) = (01 0: ) · · · (01 03) (01 02) (3.33)

and asked to verify that it is true. The way to do this is to remember that, although
English is read from left to right, some stuff in math such a function composition and
group multiplication is read from right to left (in most math books, that is. You might
run into a book that tries to insist that function composition and the permutation
notation be read from left to right just like English text. While I understand the
notion of not tying oneself down to a particular notation or convention, I personally
recommend not confusing oneself and to walk away from such a book.) Thus, read
the transpositions on the right-hand side of the expression and convince yourself that
it does the same thing as the left-hand side. For example, consider 01. The left-hand
size maps 01 to 02. The right-hand side, reading from right to left, maps 01 to 02
and then . . . does nothing else since no other transposition involves 02. Thus, the
right-hand side also maps 01 to 02. What about 02? The left-hand size maps 02 to
03. The right-hand size, reading from right to left, maps 02 to 01 and then maps 01
to 03 and then . . . does nothing else since no other transposition involves 03. Thus,
the end result is that the right-hand size also maps 01 to 03. Continuing this line of
reasoning validates the equality.

Essentially, imagine you have a staircase with : steps and you want to move
objects on those steps. The statement is sort of like saying that if you want to move
something, for example yourself, from step 0 9 to 0 9+1 you could jump from step 0 9
to 0 9+1 or first jump from step 0 9 to step 01 and then jump to 0 9+1. In a permutation,
the intermediate steps might differ as the objects are permuted, but the final result is
the same permutation of the objects.

Corollary 3.3 The transpositions generate (=.

Proof By Theorem 3.1, any element in (= can be written as a product of disjoint
cycles. By Theorem 3.7, each of the cycles in the disjoint cycle decomposition can
be written as a product of transpositions. �

Theorem 3.8 The transpositions (1 2), (1 3), · · · , (1 =) (so a total of = − 1 transpo-
sitions) generate (=.
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Proof Note that (0 1) = (1 0) (1 1) (1 0)−1, according to Theorem 3.5. Therefore,
starting from the = − 1 transpositions in the statement of this theorem, we can make
all =(=−1)

2 transpositions in (= and then apply Corollary 3.3. �

Theorem 3.9 (1 2), (2 3), · · · , (= − 1 =) generate (=.

Proof The idea is to make all the transpositions that appear in Theorem 3.8 from
the ones in the statement of this theorem. This can be done since

(1 2) = (1 2) (3.34)

(1 3) = (1 2) (2 3) (1 2)−1 (3.35)

(1 4) = (1 3) (3 4) (1 3)−1 (3.36)
... (3.37)

(1 =) = (1 = − 1) (= − 1 =) (1 = − 1)−1, (3.38)

where we have used Theorem 3.5 to go from the right side to the left side. �

Theorem 3.10 (= is generated by two elements. For example, it suffices to use (1 2)
and (1 2 · · · =).

Proof Define V ≡ (1 2 · · · =). Note that

(1 2) = (1 2) (3.39)

V(1 2)V−1 = (2 3) (3.40)

V2 (1 2)V−2 = (3 4) (3.41)
... (3.42)

V (=−1) (1 2)V−(=−1) = (= − 1 =), (3.43)

where we have used Theorem 3.5 to go from the left side to the right side. Theorem
3.9 then gives the necessary conclusion. �

3.2.1 Cycle Structure

Definition 3.10 For U ∈ (=, the cycle structure (or cycle type, or cycle shape) of
U is a list of the number of 1-cycles, 2-cycles, · · · , =-cycles in the disjoint cycle
decomposition for U.

Definition 3.11 We say that two elements U, V ∈ (= have the same cycle structure if
U and V have the same number of 1-cycles, . . . , and the same number of =-cycles.

We will often denote a particular cycle structure by using • as a stand-in for
a number in the disjoint cycle decomposition of the group element. We will drop
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1-cycles in this informal notation in order to avoid writing (•) a potentially large
number of times.

Example 3.13 In (= for = ≥ 5, (• • •)(••) stands for any permutation with (= −
5) 1-cycles, one 2-cycle, and one 3-cycle with all cycles disjoint. For example,
(1 2 3) (4 5) ∈ (= for any = ≥ 5 has cycle structure (• • •)(••).

Note that when talking about cycle structure, we refer to a disjoint cycle decompo-
sition. This means that (•••)(••) means the same things as (••)(•••) in the context
of cycle structures. Outside the context of cycle structures (and disjoint cycles), then
(• • •) and (••) might share numbers and it matters, in general, whether one writes
the 3-cycle first or not. We will almost always (maybe even always?) use this bullet
notation only when referring to cycle structures so that the positioning won’t matter.

Theorem 3.11 Suppose U, V ∈ (= have the same cycle structure. Then there exists a
f ∈ (= such that fUf−1 = V.

Proof Write out U and V individually as a product of disjoint cycles. Order the cycles
from left to right in nondecreasing length. That is, list all of the 1-cycles first (if any),
then the 2-cycles (if any), · · · , then the =-cycle (if any). Write U on top of V. Define
f to be the map that sends the number in U to the number below it in V. Then f is a
permutation and fUf−1 = V. �

Example 3.14 Let U = (1 4 2 7 9) (3 5 8) and V = (1 5 9 2 3) (4 6 7). Then U and V
has the same cycle structure. The first step is to write out their cycle decomposition
fully, including any 1-cycles. Then we order the cycles by nondecreasing lengths.
Then stack them on top of each other. The result is:

U = (6) (3 5 8) (1 4 2 7 9) (3.44)
V = (8) (4 6 7) (1 5 9 2 3) (3.45)

Thus, we want to define f as f(6) = 8, f(3) = 4, f(5) = 6, f(8) = 7, f(1) = 1,
f(4) = 5, f(2) = 9, f(7) = 2, f(9) = 3. That is, f = (1) (2 9 3 4 5 6 8 7).Dropping
the 1-cycle, the answer can also be written as f = (2 9 3 4 5 6 8 7). Actually, the f
such that fUf−1 = V is often not unique. For example, instead of writing

U = (6) (3 5 8) (1 4 2 7 9) (3.46)
V = (8) (4 6 7) (1 5 9 2 3) (3.47)

we can clearly write

U = (6) (5 8 3) (1 4 2 7 9) (3.48)
V = (8) (4 6 7) (1 5 9 2 3) (3.49)

which would give f = (1) (2 9 3 7) (4 5) (6 8).
Note: It is important in the above to actually list the 1-cycles of the permutations.

We often drop the 1-cycles when writing the final permutation, but the intermediate
steps require that we write things out fully. For example, suppose we wrote
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U = (3 5 8) (1 4 2 7 9) (3.50)
V = (4 6 7) (1 5 9 2 3) (3.51)

with the 1-cycles missing. This would give f(3) = 4, f(5) = 6, f(8) = 7, f(1) = 1,
f(4) = 5, f(2) = 9, f(7) = 2, f(9) = 3. That is, f = (1) (2 9 3 4 5 6 · · · . Uh-oh.
Where does 6 get mapped to? It seems like we cannot close the cycle. This is because
we have omitted the 1-cycles, but if we write them out we see that we can send 6 to
8 and then the cycle closes.

3.3 The Alternating Group Gn

Consider the following polynomial

%(G1, · · · , G=) =
∏

1≤8< 9≤=
(G8 − G 9 ). (3.52)

Example 3.15 Let = = 3. Then

%(G1, G2, G3) = (G1 − G2) (G1 − G3) (G2 − G3). (3.53)

Example 3.16 Let = = 4. Then

%(G1, G2, G3, G4) = (G1 − G2) (G1 − G3) (G1 − G4) (G2 − G3) (G2 − G4) (G3 − G4). (3.54)

Next, we define a way for any f ∈ (= to act on the polynomial % (we leave the
arguments implicit). Define

f% ≡
∏

1≤8< 9≤=
(Gf (8) − Gf ( 9) ). (3.55)

Example 3.17 Let = = 3. Consider f = (1 3) ∈ (3. Then

f% = (Gf (1) − Gf (2) ) (Gf (1) − Gf (3) ) (Gf (2) − Gf (3) ) (3.56)
= (G3 − G2) (G3 − G1) (G2 − G1)
= [−(G1 − G2)] [−(G1 − G3)] [−(G2 − G3)]
= −%.

Example 3.18 Let = = 4. Consider f = (1 4 2) ∈ (4. Then
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f% = {(Gf (1) − Gf (2) ) (Gf (1) − Gf (3) ) (Gf (1) − Gf (4) ) (3.57)
· (Gf (2) − Gf (3) ) (Gf (2) − Gf (4) ) (Gf (3) − Gf (4) )}

= (G4 − G1) (G4 − G3) (G4 − G2) (G1 − G3) (G1 − G2) (G3 − G2)
= (G1 − G2) (G1 − G3) [−(G1 − G4)] [−(G2 − G3)] [−(G2 − G4)] [−(G3 − G4)]
= +%.

More generally, f% will return either +% or −% for any f ∈ (=.

Definition 3.12 For any f ∈ (=, we say that f is an even permutation if f% = +%
and an odd permutation if f% = −%. Writing f% = n% where n ∈ {1,−1}, we call
n the sign of f.

Theorem 3.12 The sign of any transposition in (= is -1.

Proof Note that % has only one term involving ±(G1 − G2). To be precise, that term
is (G1 − G2). Therefore, (1 2)% = −%, so the sign of (1 2) is -1. Also, note that
(0 1) (0 1)% = +% since if (0 1)% = n%, we have (0 1)2% = n2% = +%. This
observation together with the fact that (1 0) = (2 0) (1 2) (2 0)−1 = (2 0) (1 2) (2 0)
for any 2 < 0 ≤ = leads us to conclude that (1 0)% = −%. Then, since (0 1) =
(1 0) (1 1) (1 0)−1 = (1 0) (1 1) (1 0), we conclude that (0 1)% = −%. Therefore, all
transpositions have sign -1. �

Any product of an even number of transpositions will have a sign of (−1)even = +1
while any product of an odd number of transpositions will have a sign of (−1)odd =
−1. Also, Theorem 3.7 tells us that any :-cycle (01 02 · · · 0: ) can be written as a
product of : − 1 transpositions:

(01 02 · · · 0: ) = (01 02) (02 03) · · · (0:−1 0: ). (3.58)

Therefore, a :-cycle is an even permutation when : is odd and an odd permutation
when : is even.

Theorem 3.13 Define �= to be the subset of (= consisting of the even permutations
of (=. Then �= with the same binary operation as (= forms a subgroup of (=, called
the alternating group �= of degree =.

Proof Note that 4% = +% so 4 ∈ �=. Therefore, �= is nonempty. Let U, V ∈ (= be
even permutations. Taking the disjoint cycle decomposition of V and reversing the
order of each cycle gives V−1 (see Corollary 3.1), which will clearly also be an even
permutation. Therefore, UV−1 is an even permutation so UV−1 ∈ �=. By Theorem
1.1, �= is a subgroup of (=. �

Theorem 3.14 |�= | = =!
2 for = > 1 and |�= | = 1 for = = 1.

Proof If = = 1, then (= contains only 4. Since 4 is an even permutation, �= also
only contains 4. Let us consider the case = > 1. Let #4E4= be the number of even
permutations in (=. Let #>33 be the number of odd permutations in (=.
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• List all of the even elements of (=:

U1, · · · , U#4E4=
. (3.59)

Note that (1 2)U8 is an odd permutation for any 8 = 1, 2, · · · , #4E4=. Also, note
that (1 2)U8 = (1 2)U 9 implies that 8 = 9 since (= is a group so the inverse of
(1 2) exists (namely, (1 2)−1 = (1 2)). Therefore, we see that

(1 2)U1, · · · , (1 2)U#4E4=
(3.60)

are #4E4= distinct odd permutations. Thus, #>33 ≥ #4E4=.
• List all of the odd elements of (=:

V1, · · · , V#>33
. (3.61)

Note that (1 2)V8 is an even permutation for any 8 = 1, 2 · · · , #>33 . Also, note
that (1 2)V8 = (1 2)V 9 implies that 8 = 9 since (= is a group so the inverse of
(1 2) exists (namely, (1 2)−1 = (1 2)). Therefore, we see that

(1 2)V1, · · · , (1 2)V#>33
(3.62)

are #>33 distinct even permutations. Thus, #4E4= ≥ #>33 .
Combine the two inequalities to conclude that #4E4= = #>33 . Since |(= | = #4E4= +
#>33 , we conclude that #4E4= = |(= |2 . That is, |�= | = =!

2 . �

Actually, let’s present the proof slightly more generally.

Proof Fix f to be any odd permutation (this requires = ≥ 2). For example, could
choose f = (1 2) as above. Let �= be the set of odd permutations in (=. Define
5 : �= → �= by U ↦→ fU. This is well-defined since if U is even then fU is odd.
Define 6 : �= → �= to V ↦→ f−1V. This is well-defined since f−1 is odd. Observe
that 5 ◦ 6 = id�=

and 6 ◦ 5 = id�=
. Since there exist bĳections between the sets �=

and �= we conclude that |�= | and |�= | are equal. Therefore,

|(= | = |�= | + |�= | = |�= | + |�= | = 2|�= | (3.63)

|�= | =
|(= |
2
. (3.64)

Using a similar argument, one can prove the following proposition.

Proposition 3.4 Let � be a subgroup of (= such that � * �=. Then � has an equal
number of even and odd permutations.

Proof This is assigned as Problem 3.10. �

Wehave seen several ways to generate (=. For example, we saw that transpositions
(the 2-cycles) generate (=. One can find analogous theorems for �=.

Theorem 3.15 The 3-cycles generate �= for = ≥ 3.
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Proof Any 3-cycle is an even permutation, so it certainly belongs to �=. Pick any
element U ∈ �=. Write U as a product of disjoint cycles. Then use Theorem 3.8
to write each cycle in the cycle decomposition of U as a product of terms of the
form (1 0), where 1 < 0 ≤ =. This expresses U as a product of an even number of
transpositions of the form (1 0). Read the transposition decomposition of U from
right to left and pair off adjacent transpositions. Each pairing will look like (1 0) (1 1)
for some 0 and some 1. But (1 0) (1 1) = (1 1 0), which is a 3-cycle. The fact that
there is an even number of transpositions means that no transposition is left unpaired.
Therefore, any U ∈ �= can be written as a product of 3-cycles. �

Example 3.19 Consider the alternating group �4. The twelve elements of �4 are

4, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3),
(1 2 3), (1 2 4), (1 3 4), (2 3 4),
(1 3 2), (1 4 2), (1 4 3), (2 4 3).

(3.65)

�4 has an identity element, three elements with cycle structure (••)(••), and eight
elements with cycle structure (• • •).

There are many more facts that one can prove about (= and �=. Consider the
following.

Proposition 3.5 The set of 3-cycles of the form (1 : : + 1) (entries read mod = and
distinct) generates �=. (The case = = 1 is trivial.)

Proof This is Problem 3.14. �

Proposition 3.6 The set of 3-cycles of the form (: : + 1 : + 2) (entries read mod =)
generates �= when = ≥ 3. (The case = = 1 is trivial.)

Proof This is Problem 3.15. �

Proposition 3.7 When = is odd (and greater than or equal to 3), then (1 2 3) and
(1 2 . . . =) together generate �=.When = is even (and greater than equal to 4), then
(1 2 3) and (2 3 . . . =) together generate �=.

Proof This is Problem 3.16. �

You are strongly encouraged to prove the above propositions as practice and as a
way to test your understanding of the material.

Problems

3.1 Prove Theorem 3.6. That is, let U ∈ (=. Write U as a product of disjoint cycles
U = U1U2 · · · U: . Prove that |U | = lcm( |U1 |, |U2 |, · · · , |U: |). In words, the order of an
element U in (= is equal to the least common multiple of the orders of the disjoint
cycles that appear in a disjoint cycle decomposition of U.
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3.2 What are the orders of the following elements?
a) (4 2 7)(1 3 5 9)
b) (1 3 2)(5 6 9 8 7)
c) (1 3 2)(5 6 9 8 2)

3.3 Let - = {1, 2, 3, · · · }. Prove that (- is an infinite group. (Do not say∞! = ∞.)
3.4 Compute f%(G1, G2, G3, G4) explicitly using the definition of f% when
a) f = (1 2 4).
b) f = (1 2) (3 2 4).

3.5 Let U, V ∈ (=. Argue that sgn(UVU−1) = sgn(V).
3.6 Let U be the :-cycle (1 2 · · · :). Show that U 9 is a :-cycle if and only if
gcd( 9 , :) = 1.

3.7 Consider the group �6.

a) How many elements of order 2 are there in �6?
b) How many elements of order 3 are there in �6?

3.8 Consider the group (=. Let 1 ≤ : ≤ =. How many (distinct) :-cycles are there
in (=?

3.9 How many elements in (8 have the same cycle structure as (1 2 3) (4 5 6) (7 8)?
3.10 Let � be a subgroup of (= such that � * �=. Prove that � has an equal number
of even and odd permutations. (Needless to say, the problem statement forces = > 1.)

3.11 Show that for G ∈ (7, the equation G2 = (4 5 6 7) has no solutions, but the
equation G3 = (4 5 6 7) has at least two solutions.

3.12 a) For any :-cycle U ∈ (=, find, with proof, the cycle shape of U3. (Example:
the cube of a 6-cycle has cycle shape (••)(••)(••).)

b) Find all solutions f ∈ (7 of the equation f3 = (1 4 5 7).
3.13 a) Find the smallest = so that (= contains an element of order 21. Why is it

the smallest?
b) For this =, how many elements of order 21 does (= have?

3.14 Prove Proposition 3.5.

3.15 Prove Proposition 3.6.

3.16 Prove Proposition 3.7.

3.17 Show that for = ≥ 4 every element of (= can be written as a product of two
permutations, each of which has order 2.

3.18 Let U, V ∈ (= be such that UV = VU. Prove that V permutes those integers which
are fixed by U. Prove that if U is an =-cycle then V must be a power of U.

3.19 How many permutations in (= have 1 in the same cycle with either 2 or 3, but
not both?



Chapter 4
Homomorphisms and Isomorphisms

Abstract The theme of this chapter is this: We should study both mathematical
objects and the functions/maps/morphisms between them.

4.1 Homomorphisms

Definition 4.1 Let � be a group with binary operation � : � ×� → �. Let � ′ be a
group with binary operation★ : � ′ ×� ′→ � ′. A homomorphism q : � → � ′ is a
function that satisfies q(G � H) = q(G) ★ q(H) for ∀G, H ∈ �.

Note: We often use multiplicative notation when proving theorems and write
q(GH) = q(G)q(H), where it is understood that GH is the group operation of �
and q(G)q(H) is the group operation of � ′. For example, it is possible that the
binary operation � is multiplication in one of the usual ways (for example, regular
multiplication or modular multiplication) but the binary operation ★ is addition in
one of the usual ways (for example, regular addition or modular arithmetic). See
Propositions 4.1 and 4.2 for a perfect example of this. Perhaps a table would be
insightful. See Table 4.1.

Table 4.1: Homomorphism q : � → � ′ for common binary operation notations.

� binary operation � �′ binary operation★ q (G � H) = q (G) ★ q (H)
multiplicative multiplicative q (GH) = q (G)q (H)
multiplicative additive q (GH) = q (G) + q (H)
additive multiplicative q (G + H) = q (G)q (H)
additive additive q (G + H) = q (G) + q (H)

Example 4.1 det : �!= (R) → (R×, ·, 1) is a homomorphism since

47
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det(��) = det(�) det(�) (4.1)

for ∀�, � ∈ �!= (R).

Definition 4.2 Let q : � → � ′ be a homomorphism. The kernel of q, denoted ker q,
is the set

ker q = {6 ∈ � | q(6) = 4′}.

Theorem 4.1 Let q : � → � ′ be a homomorphism. Then

i) q(4) = 4′. (Note: We write 4 ∈ � and 4′ ∈ � ′ to emphasize that, in general, the
identity elements belong to different groups.)

ii) q(G−1) = q(G)−1 for any G ∈ �.
iii) q(G=) = q(G)= for any = ∈ Z+ and any G ∈ �.
iv) q(G=) = q(G)= for any = ∈ Z and any G ∈ �.
v) ker q is a subgroup of �.
vi) im q is a subgroup of � ′.

Proof i)

q(4) = q(44) = q(4)q(4)
q(4) = q(4)q(4)

q(4)q(4)−1 = q(4)q(4)q(4)−1

4′ = q(4)

ii)

q(4) = q(GG−1) = q(G)q(G−1)
4′ = q(G)q(G−1)

q(G)−14′ = q(G)−1q(G)q(G−1)
q(G)−1 = q(G−1)

iii) q(G2) = q(GG) = q(G)q(G) = q(G)2 establishes the base case. Now we use in-
duction. Assume q(G=) = q(G)= holds. Then q(G=+1) = q(G=G) = q(G=)q(G) =
q(G)=q(G) = q(G)=+1.

iv) This follows from part iii) combined with part ii). (The case = = 0 is obvious.)
v) Note that q(4) = 4′ so ker q is non-empty. Suppose G, H ∈ ker q. Then

q(GH−1) = q(G)q(H−1) = q(G)q(H)−1 = 4′(4′)−1 = 4′. (4.2)

Therefore, GH−1 ∈ ker q. By Theorem 1.1, ker q is a subgroup of �.
vi) 4 ∈ � so � is nonempty. Part i) shows that q(4) = 4′ ∈ � ′ so im q is nonempty.

Let G ′, H′ ∈ im q. There there exist G, H ∈ � such that q(G) = G ′ and q(H) =
H′. By part ii), H′−1 = q(H)−1 = q(H−1). Therefore, G ′H′−1 = q(G)q(H−1) =
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q(GH−1). But GH−1 ∈ � since � is a group. Therefore, G ′H′−1 ∈ im q. By
Theorem 1.1, im q is a subgroup of � ′. �

A comment about notation might be appropriate here. Here, q(G)−1 means the
inverse (in multiplicative notation) of q(G). In particular, it is not the inverse map of
q applied to 6.

While homomorphisms have some nice properties such as those in the proposition
above, homomorphisms lose some information.

Example 4.2 det is surjective on (R×, ·, 1) but not injective. For example,

det
[
G 0
0 1

]
= G = det

[
1 0
0 G

]
(4.3)

for ∀G ∈ R×.

Example 4.3 Consider det : �!= (R) → (R×, ·, 1). Note that�!= (R) is non-abelian
for = ≥ 2 but (R×, ·, 1) is abelian. Thus, homomorphisms may "lose" information
about the "abelianess" or "non-abelianess" of groups.

A way to contain more information about groups is to consider isomorphisms.

4.2 Isomorphisms

Definition 4.3 Let � and � ′ be groups. An isomorphism q : � → � ′ is a bĳective
homomorphism. If q : � → � ′ is an isomorphism, we say that � and � ′ are
isomorphic and write � � � ′.

For some intuition on what this means, see Figure 4.1.

Proposition 4.1 Any infinite cyclic group is isomorphic to (Z, +, 0).

Proof Let � be an infinite cyclic group. Let G ∈ � be a generator of �. Define
q : Z→ � by q(=) = G=. q is a homomorphism since q(= + <) = G=+< = G=G< =
q(=)q(<). It is surjective because � is cyclic so for ∀H ∈ � there ∃< ∈ Z such that
H = G<. Assume q were not injective. Pick =, < ∈ Z such that q(=) = q(<). This
means G= = G<, which holds if and only if 4 = G=−<. If = − < ≠ 0 then 4 = G=−<
which implies that� is generated by an element with a finite order (the order being at
most |=−< |), a contradiction. Thus, q is injective and hence q is an isomorphism.�

What the above shows is that all infinite cyclic groups are "the same." To be clear,
the notion of "the same" is formalized by the idea of an isomorphism. This means
that all infinite cyclic groups are really all just the same group "in disguise" due to
a different labeling of its elements and binary operation. This is just a choice. If one
wanted to count and distinguish using other methods and definitions, one could. The
definitions mentioned are time-tested and have proved to be useful.
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Fig. 4.1: Two groups� and � might appear to be different but a one-to-one and onto
"relabeling" by a homomorphism q (that is, q is an isomorphism) shows that they
are really "the same" group.

Proposition 4.2 Any finite cyclic group of order = is isomorphic to (Z=, +, 0).

Proof Let � be a cyclic group with |� | = =. Pick G ∈ � with G ≠ 4. Then � = 〈G〉.
Define q : � → Z= by q(G0) = 0 (mod =). q is clearly bĳective. It is also a
homomorphism since

q(G0G1) = q(G0+1) = 0 += 1 (4.4)
= (0 (mod =)) += (1 (mod =))
= q(G0) += q(G1)

(Note that the binary operation for (Z=, +=, 0) involves modular arithmetic so we
write q(G0G1) = q(G0) += q(G1) instead of q(G0G1) = q(G0)q(G1).) �

Example 4.4 Q and Q+ are not isomorphic. Suppose there exists an isomorphism
q : Q → Q+. Then, since q is surjective, there exists an G ∈ Q such that q(G) = 2.
Since q is a homomorphism, we know that

q(G/2)q(G/2) = q(G/2 + G/2) = q(G) = 2. (4.5)

By assumption, q(G/2) ∈ Q+. However, there exists no positive rational number
equal to

√
2 since

√
2 is irrational. Therefore, there exists no isomorphism between

Q and Q+.

Proposition 4.3 Let q : � → � ′ be an isomorphism of groups. Then q−1 : � ′→ �

is also an isomorphism of groups.



4.2 Isomorphisms 51

Proof q−1 is clearly bĳective. We need to show that q−1 is a homomorphism. Pick
G ′, H′ ∈ � ′. Since q is bĳective, there ∃G, H ∈ � such that q(G) = G ′ and q(H) = H′.
Then

q−1 (G ′H′) = q−1 (q(G)q(H)) = q−1 (q(GH)) = GH. (4.6)

Also,

q−1 (G ′)q−1 (H′) = q−1 (q(G))q−1 (q(H)) = GH. (4.7)

Thus, q−1 (G ′H′) = q−1 (G ′)q−1 (H′) for arbitrary G ′, H′ ∈ � ′. �

Proposition 4.4 Let q : � → � ′ and j : � ′ → � ′′ be isomorphism. Then j ◦ q :
� → � ′′ is an isomorphism. In other words, if� � � ′ and� ′ � � ′′, then� � � ′′.

Proof Recall from previous math experience that the composition of bĳective func-
tions is still bĳective. We must prove j ◦ q is a homomorphism as well. Let G, H ∈ �
be arbitrary. Note that

(j ◦ q) (G) (j ◦ q) (H) = j(q(G))j(q(H)) (4.8)
= j(q(G)q(H))
= j(q(GH))
= (j ◦ q) (GH).

Since G, H ∈ � were arbitrary, this completes the proof. �

Note: � � � since the identity map id : � → � defined by id(G) = G for any
G ∈ � is an isomorphism. This together with Proposition 4.3 and 4.4 shows that
being isomorphic is an equivalence relation.

There are a few properties of groups preserved by isomorphisms.

Theorem 4.2 Let q : � → � ′ be an isomorphism. Then

i) � is abelian if and only if � ′ is abelian.
ii) A subset � is a subgroup of � if and only if q(�) is a subgroup of � ′.
iii) |G | = |q(G) | for ∀G ∈ �.

Proof i) Let G ′, H′ ∈ � be arbitrary. Since q is bĳective, there exist G, H ∈ � such
that q(G) = G ′ and q(H) = H′. Note that

G ′H′ = q(G)q(H) = q(GH) = q(HG) = q(H)q(G) = H′G ′ (4.9)

holds if and only if � and � ′ are abelian. G ′, H′ were arbitrary.
ii) Let � ⊆ �. Let q(�) = {q(ℎ) | ℎ ∈ �}. Pick G, H ∈ �. Note that

q(G)q(H)−1 = q(G)q(H−1) = q(GH−1) (4.10)

so that GH−1 ∈ � if and only if q(G)q(H)−1 ∈ q(�).
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iii) Let G ∈ �. Consider � ≡ 〈G〉. Then

q(�) = {q(ℎ) | ℎ ∈ �} (4.11)
= {q(G=) | = ∈ {0, · · · , |G |}}
= {q(G)= | = ∈ {0, · · · , |G |}}.

In particular, q(�) = 〈q(G)〉. Since q is bĳective, � and q(�) must have the
same number of elements. Therefore, |〈G〉| = |〈q(G)〉|. That is, |G | = |q(G) |. �

Note: Theorem 4.2 is useful as a way of checking/proving that certain groups are
not isomorphic. For example, (3 � Z6 since (3 has no element of order 6 whereas
Z6 does. Also, (3 is non-abelian whereas Z6 is abelian.

Proposition 4.5 For cyclic groups of the same order, you can define an isomorphism
by sending any generator of one group to any generator of the other group.

Proof Left to reader. �

4.2.1 Automorphisms

You might be tempted to think of isomorphisms � → � ′ as being defined between
differently labeled sets and with different binary operations. However, one can also
define an isomorphism from � to �.

Definition 4.4 An isomorphism q : � → � is called an automorphism of �.

Every group is isomorphic to itself since the identity map id : � → � is an iso-
morphism. The point is that the identity map isn’t necessarily the only isomorphism
from � to �.

Example 4.5 Let � = (Z3, +, 0). Let the elements of � be 0, 1, 2. Verify that q1, q2
defined by

q1 (0) = 0, q1 (1) = 1, q1 (2) = 2, (4.12)
q2 (0) = 0, q2 (1) = 2, q2 (2) = 1,

are both automorphisms of �. Of course, q1 is the identity isomorphism, but q2 is
an automorphism distinct from the identity map.

Example 4.6 Let � be any group. Then q : � → � defined by q(G) = 6G6−1 for
any G ∈ � is an automorphism of �. Problem 4.1 asks you to verify this.

Example 4.7 Let � be an abelian group. Then q : � → � defined by q(G) = G−1

is an automorphism of �. Problem 4.3 asks you to verify this and also show that if
q(G) = G−1 is an automorphism for some group � then � is abelian.
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Definition 4.5 An inner automorphism is any automorphism that arises from conju-
gation. That is, an inner automorphism q : � → � is equal to q(G) = 6G6−1 for all
G ∈ � for some fixed 6 ∈ �.

A composition of two automorphisms for a group � is an automorphism of �.
Automorphisms, being isomorphisms, have inverses which are also automorphisms.
The identity map is an automorphism. Convince yourself that the set of all automor-
phisms where the binary operation is function composition forms a group.

Definition 4.6 The automorphism group of �, written Aut(�), is the set of all
automorphisms of � where the binary operation is function composition.

Example 4.8 An automorphism, being an isomorphism, must preserve the order
of each element (see Theorem 4.2). Consider an automorphism of (3. Then any
automorphism must map {(1 2), (1 3), (2 3)} to itself. That is, an automorphism of
(3 permutes (1 2), (1 3), (2 3). Conversely, every permutation of (1 2), (1 3), (2 3)
corresponds to an automorphism of (3. Similar arguments apply to the 3-cycles in
(3. Therefore, Aut((3) � (3.

Problems 4.10 and 4.11 walk you through the derivation of Aut(�) when � =

(Z, +, 0) and � = (Z=, +=, 0), respectively.

4.2.2 Up to an isomorphism

You may sometimes see the expression "up to an isomorphism" thrown around. In a
group theory setting, all this means is that there exists an isomorphism between the
two objects in discussion. Isomorphisms in group theory are the precise way to say
that two groups are "the same." For example, consider the group (�, ·, 1) in Example
1.5. Notice that 〈−1〉 ≤ �. Sometimes you might see statements like "� contains Z2,
up to an isomorphism" or even more briefly/sloppily, "� contains Z2." Such brief
statements which leave the discussion of isomorphisms implicit is common among
physicists and physics books.

4.2.3 Cayley’s Theorem

Some groups act on spaces, for example on solids embedded in R3. However, every
group � acts on itself. Recall that for any set - , (- is the group of permutations on
- , where the binary operation is function composition.

Theorem 4.3 Cayley’s theorem - Any group � is isomorphic to a subgroup of (� .

Proof For ∀6 ∈ �, consider the function !6 defined by !6 (G) = 6G for ∀G ∈ �,
called left translation. It is injective, since !6 (G) = !6 (H) implies 6G = 6H which
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implies G = H, since � is a group and hence contains 6−1. It is surjective since for
∀G ∈ � we have !6 (6−1G) = G. Thus, !6 : � → � is bĳective and so !6 ∈ (� .
Note that !6−1 ∈ (� is the inverse of !6 ∈ (� . Define q : � → (� by q(6) = !6 .
We claim that q is an isomorphism. It is a homomorphism because

q(6162) = !6162 = !61 ◦ !62 = q(61) ◦ q(62). (4.13)

Injectivity of q is clear. Thus, � � im q � subgroup of (� (surjectivity of q is true
by definition. q clearly maps onto its image, as does any function.). �

Remark: On a first read, the above proof may seem abstract. As a reminder, in
the proof that q : � → (� is a homomorphism it is important to remember that the
left-hand and right-hand sides have, in general, different binary operations. On the
left-hand side, the binary operation is that of the group �. On the right-hand side,
the binary operation is that of the group (� , which for us is function composition.

Note: Nowhere in the proof did we assume that � is a finite group. The same
proof applies to finite or infinite groups.

Problems

4.1 a) Let � be a group. For any 6 ∈ �, define a function q6 : � → � by
q6 (G) = 6G6−1 for ∀G ∈ �. Show that q6 is an isomorphism. Use Theorem 4.2,
to conclude that |6 | = |6G6−1 |. This also solves Problem 1.5.

b) Let� = �4 and 6 = (1 2 3).Work out q6 (G) for all G ∈ �4. Corollary 3.2 might
be helpful.

4.2 Let� be a group. Show that q : � → � defined by q(G) = G2 is a homomorphism
if and only if � is abelian.

4.3 Let� be a group. Show that q : � → � defined by q(G) = G−1 is an isomorphism
if and only if � is abelian.

4.4 Show that the subgroup of (4 generated by (1 2 3 4) and (2 4) is isomorphic to
�4.

4.5 Prove that Q is not isomorphic to Z.

4.6 Prove that �12 and (4 are not isomorphic.

4.7 Prove that �4 and &8 are not isomorphic.

4.8 How many distinct isomorphisms are there from (3 to �3?

4.9 Show that every automorphism q of the rational numbers Q under addition has
the form q(G) = Gq(1).

4.10 Let � be the infinite cyclic group (Z, +, 0).
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a) Show that there are two isomorphisms � → �, the identity function q1 (0) = 0
and the function q−1 (0) = −0 for all 0 ∈ �.

b) Show that these are the only isomorphisms � → �.

c) Show that, under function composition, q: ◦ q; = q:; . Deduce that the auto-
morphisms of � = (Z, +, 0) form a group isomorphic to (Z×, ·, 1) (which is
isomorphic to Z2).

4.11 Let � be the finite cyclic group (Z=, +=, 0).
a) For each : ∈ Z×= , show that q: (0) = : ·= 0 is an isomorphism � → �.

b) Show that these are the only isomorphisms � → �.

c) Show that, under function composition, q: ◦ q; = q:; (mod =) . Deduce that the
automorphisms of � = (Z=, +=, 0) form a group isomorphic to (Z×= , ·=, 1).

4.12 Carry out the procedure of Cayley’s theorem to obtain a subgroup of (6 which
is isomorphic to �3.

4.13 Let � be a finite group, and choose a list B1, . . . , B: of generators of �. The
Cayley graph for � and the {B8} is built as follows. Draw one vertex for each G ∈ �.
Whenever H = B8G, draw an edge from G to H, with an arrowhead1 in the middle of
the edge pointing to H. The edges have : different colors, one for each B8 .

Rationale: The Cayley graph makes Cayley’s Theorem visual. !B8 is the permuta-
tion of� where each vertex is sent to the vertex one step forward along the B8-colored
arrows. !6 for any 6 ∈ � is found by expressing 6 as a product of the generators.

a) Draw the Cayley graph for �3 with generators A, B.
b) Draw the Cayley graph for (3 with generators (1 2), (2 3).
c) Provide a proof or counterexample to the following claim: the Cayley graph only

depends on �, not on the choice of generators.
d) Draw the Cayley graph for the Klein four-group using two generators.
e) Draw the Cayley graph for (4 with generators (1 2), (2 3), (3 4). (Hints: Since
〈(1 2), (2 3)〉 is a subgroup isomorphic to (3, the answer to b) will appear.
From 〈(2 3), (3 4)〉, the answer to b) will appear in another way. What about
〈(1 2), (3 4)〉?)

Fig. 4.2: Nice images to accompany Problem 4.13. (Why? What’s the connection
with the images and the problem?)

1 A graph with arrowheads on the edges is called a directed graph. When B8 has order 2, we can
omit the arrowhead (why?).
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4.14 a) Prove that Q, the group of positive rational numbers under multiplication,
is isomorphic to a proper subgroup of itself.

b) Prove that Q, the group of rational numbers under addition, is not isomorphic to
a proper subgroup of itself.



Chapter 5
Platonic Solids

Abstract This chapter is about Platonic solids and their rotational symmetries.

5.1 Platonic Solids and Rotational Symmetries

There are five convex regular solids: the tetrahedron, the cube, the octahedron, the
dodecahedron, and the icosahedron. See Figure 5.1. In this chapter, we would like
to find the order of the rotational symmetry groups of each of these solids, as well
as the symmetry groups (up to isomorphisms).

Definition 5.1 An =-fold axis of symmetry for an object is a line under which rotation
by 2c/= about the line leaves the object invariant.

Fig. 5.1: The five Platonic solids. Figure from http://www-groups.mcs.st-
andrews.ac.uk/∼john/geometry/Lectures/L10.html. (I will need to generate my own
figures later.)

57
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5.1.1 The Tetrahedron

Proposition 5.1 The tetrahedron has 12 rotational symmetries. The group of rota-
tions of a tetrahedron (the tetrahedral group) is isomorphic to �4.

Proof The tetrahedron has

• four 3-fold axes of symmetry, each of which passes through a vertex and the
center of the face opposite to that vertex. These give eight nonidentity group
elements, each of which has order 3.

• three 2-fold axes of symmetry, each of which passes through the middle of two
opposite edges. These give three nonidentity group elements, each of which has
order 2.

• the identity as a symmetry. �

In total, we found 8 + 3 + 1 = 12 rotational symmetries. We claim that the rotational
symmetry group is isomorphic to �4. To see this, label the vertices 1, 2, 3, 4. Note
that each rotational symmetry of the tetrahedron corresponds to a permutation of
the labeled vertices. In particular, notice that we can always fix one of the vertices
and rotate the other three. This corresponds to 3-cycles. All eight 3-cycles are
contained in the rotational symmetry group of the tetrahedron. By Theorem 3.15,
these eight 3-cycles generate all of �4. Therefore, �4 is "contained" in the rotational
symmetry group of the tetrahedron. Using the terminology we have developed in
previous chapters, we say that the rotational symmetry group of the tetrahedron
contains an isomorphic copy of �4. However, |�4 | = 12 and we have found that the
tetrahedron has 12 rotational symmetries. Thus, the isomorphic copy of �4 contained
by the rotational symmetry group of the tetrahedron is in fact the entire rotational
symmetry group. See Figure 5.2 for a visual summary of our findings.

Many molecules with chemical formulas of the form ��4 have a tetrahedral form.
See Figure 5.3 for an example.
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Fig. 5.2: Rotational symmetries of a regular tetrahedron. Figure is from Figure 5.1 in
"Abstract Algebra" by Gallian. (I will need to make my own custom images, maybe
by using the TikZ package.)

(a) Tetrahedral arrangement in a ��4 molecule.
(b) Ball-and-stick model of ��4.

Fig. 5.3: Models representing a methane (��4) molecule.
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5.1.2 The Cube

Proposition 5.2 The cube has 24 rotational symmetries. The group of rotations of a
cube is isomorphic to (4.

Proof The cube has

• four 3-fold axes of symmetry, each of which passes through pairs of opposite
vertices. These give eight nonidentity rotations, each of order 3.

• three 4-fold axes of symmetry, each of which passes the centroids of opposite
faces. These give nine nonidentity rotations, three of which have order 2 and six
of which have order 4.

• six 2-fold axes of symmetry, each of which passes through the middles of
opposite edges. These give six nonidentity rotations, each of which has order 2.

• the identity as a symmetry.

In total, we found 8 + 9 + 6 + 1 = 24 rotational symmetries. We claim that the
rotational symmetry group is (4. To see this, label the four principle diagonals of the
cube 1, 2, 3, 4. Observe that each rotation of the cube corresponds to a permutation
of the four principle diagonals, and that this correspondence is one-to-one. Also, the
composition of two rotations induces the appropriate permutation of the diagonals.
That is, the correspondence between the rotations of the cube and the permutations
of the diagonals is a homomorphism. Therefore, the correspondence is injective and
a homomorphism. (Verify all these claims.) Note that some rotation of the cube
corresponds to the permutation (1 2 3 4) of the principal diagonals and another
corresponds to (1 2). By Theorem 3.10, (1 2 3 4) and (1 2) generate all of (4. Thus,
the group of rotational symmetries of the cube contains an isomorphic copy of (4.
However, |(4 | = 24 and we have found that the group of rotational symmetries of
the cube has 24 elements. Thus, the group of rotational symmetries of the cube is in
fact isomorphic to (4. �

5.1.3 The Octahedron

Proposition 5.3 The octahedron has 24 rotational symmetries. The group of rota-
tions of an octahedron is isomorphic to (4.

Proof The octahedron has

• four 3-fold axes of symmetry, each of which passes through the centroids of
opposite vertices. These give eight nonidentity rotations, each of order 3.

• three 4-fold axes of symmetry, each of which passes through pairs of opposite
vertices. These give nine nonidentity rotations, three of which have order 2 and
six of which have order 4.

• six 2-fold axes of symmetry, each of which passes through themiddle of opposite
edges. These give six nonidentity rotations, each of which has order 2.
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• the identity as a symmetry.

In total, we found 8+9+6+1 = 24 rotational symmetries.We claim that the symmetry
group of rotations of the octahedron is (4. Observe that one can embed four lines in
octahedron, each of which goes through the centroid of opposing faces. Label these
four lines 1, 2, 3, 4. Observe that each rotation of the octahedron corresponds to
a permutation of these four lines and that this correspondence is one-to-one. Also,
the composition of two rotations induces the appropriate permutation of the four
lines (it is each to the composition of the two permutations corresponding to the
two rotations). That is, the correspondence between the rotations of the octahedron
and the permutations of the four lines is a homomorphism. (Verify all these claims.)
Therefore, the correspondence is injective and a homomorphism. Note that some
rotation of the octahedron corresponds to the permutation (1 2 3 4) (label your four
lines and find such a rotation) and some other rotation corresponds to the permutation
(1 2) (using your same labels of the four lines, find the other rotation). By Theorem
3.10, (1 2 3 4) and (1 2) generate all of (4. Thus, the group of rotational symmetries
of the octahedron contains an isomorphic copy of (4. However, |(4 | = 24 and we
have found that the group of rotational symmetries of the octahedron has 24 elements.
Thus, the group of rotational symmetries of the octahedron is isomorphic to (4. �

5.1.4 The Dodecahedron

Proposition 5.4 The dodecahedron has 60 rotational symmetries. The group of ro-
tations of a dodecahedron is isomorphic to �5.

Proof The dodecahedron has

• six 5-fold axes of symmetry, each ofwhich goes through the centroids of opposite
faces. These give twenty-four nonidentity rotations, each of which has order 5.

• ten 3-fold axes of symmetry, each of which goes through pairs of opposite
vertices. These give twenty nonidentity elements, each of which has order 3.

• fifteen 2-fold axes of symmetry, each of which goes through the middles of
opposite edges. These give fifteen nonidentity elements, each of which has
order 2.

• the identity as a symmetry.

In total, we found 24 + 20 + 15 + 1 = 60 rotational symmetries. We claim that the
group of rotational symmetries of the dodecahedron is �5. To see this, note that a
cube can be embedded inside a dodecahedron. Each edge of the cube is a diagonal
across a pentagonal face. There are five diagonals in a pentagonal face. For each of
these five diagonals for a particular pentagonal face there is a cube embedded inside
the dodecahedron. Every rotation of the dodecahedron corresponds to a permutation
of these five cubes. The correspondence between rotations of the dodecahedron and
the permutations of the five cubes embedded in the dodecahedron is injective and a
homomorphism. (Convince yourself that these claims are true.) Consider rotations
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about the four 3-fold axes of symmetry which pass through pairs of opposite vertices.
These rotations correspond to all the 3-cycles permuting the five embedded cubes. By
Theorem 3.15, these 3-cycles generate �5. Thus, the group of rotational symmetries
of the dodecahedron contains an isomorphic copy of �5. However, |�5 | = 60 and
we have found that the group of rotational symmetries of the dodecahedron has 60
elements. Thus, the group of rotational symmetries of the dodecahedron doesn’t just
contain an isomorphic copy of �5, but is isomorphic to �5. �

5.1.5 The Icosahedron

Proposition 5.5 The icosahedron has 60 rotational symmetries. The group of rota-
tions of an icosahedron is isomorphic to �5.

Proof The icosahedron has

• six 5-fold axes of symmetry, each of which passes through pairs of opposite
vertices. These give twenty-four nonidentity rotations, each of which has order
5.

• ten 3-fold axes of symmetry, each ofwhich goes through the centroids of opposite
faces. These give twenty nonidentity elements, each of which has order 3.

• fifteen 2-fold axes of symmetry, each of which goes through the middles of
opposite edges. These give fifteen nonidentity elements, each of which has
order 2.

• the identity as a symmetry.

In total, we found 24 + 20 + 15 + 1 = 60 rotational symmetries. We claim that the
symmetry group of rotations of the icosahedron is �5. Convince yourself that the
icosahedron has tetrahedra "embedded" inside it. In fact, one can embed five of
them, with each of the twenty vertices of the icosahedron belonging to one of the
embedded tetrahedrons. Label the embedded tetrahedra 1, 2, 3, 4, 5. Each rotation
of the icosahedron corresponds to a permutation of the five embedded tetrahedra,
i.e. corresponds to an element of (5. Convince yourself that the rotational symmetry
group of the icosahedron contains rotations that corresponds to any 3-cycle of (5. By
Theorem 3.15, the 3-cycles generate �5 so we conclude that the rotational symmetry
group of the icosahedron contains an isomorphic copy of �5.However, |�5 | = 60 and
we found that the group of rotations of the icosahedron has 60 elements. Therefore,
the isomorphic copy of �5 contained by the group of rotations of the icosahedron is
in fact isomorphic to the entire group of rotations of the icosahedron.

Another proof is to find a rotation that makes a 3-cycle on the five embedded
tetrahedra. A rotation around a vertex gives a 5-cycle. Namely, we can find rotations
that corresponds to (1 2 3) and (1 2 3 4 5). By Proposition 3.7, these generate �5.�
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5.2 Dual Polyhedron

Every convex polyhedron is associated with what is called a dual polyhedron. Each
vertex of one convex polyhedron corresponds to a centroid of a face of the other
polyhedron, and each edge between vertices of one convex polyhedron corresponds
to an edge between pairs of faces of the other. An important observation is the
following.

Proposition 5.6 The dual polyhedron has the same symmetry group as the original
polyhedron.

The above proposition would have saved some work when calculating the sym-
metry groups of Platonic solids.

Proposition 5.7 The cube and the octahedron are dual to one another. The symmetry
group of rotations of both is isomorphic to (4.

Proposition 5.8 The dodecahedron and the icosahedron are dual to one another.
The symmetry group of rotations of both is isomorphic to �5.

5.3 Reflections

What about reflections? If you own a cube, you could use it to help visualize the
rotations mentioned in this chapter when deriving the symmetry group of the cube.
Physically, rotating is no problem. While we can’t reflect the cube about a plane that
cuts the cube in half, we do note that if this were physically possible then it would
map the cube back to a cube. Thus, reflections are also a symmetry of a cube. In
the next chapter, we discuss direct products of groups. We will see that to include
reflections into the symmetry group in addition to the rotations, we must take the
direct product of the rotational group with Z2 (up to isomorphisms, of course). This
discussion appears after Theorem 6.3.

Problems

5.1 Let % be a convex polyhedron in R3, with + vertices, � edges, and � faces. It is
proved in topology that the Euler characteristic

+ − � + �

depends only on the boundary of the polyhedron. Topologically, the boundary is the
sphere (2.

a) Compute the Euler characteristic of each of the five Platonic solids. (This proves
(four times redundantly) that the Euler characteristic is 2.)
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A simple polyhedron is one where each vertex is on exactly three edges and three
faces. Most polyhedra in nature are simple. If a crystal shaped like an octahedron
is washed down a river, its vertices will soon be scraped off (truncated) to look like
little squares or quadrilaterals. Each corner of the quadrilateral is on three edges.

b) Let % be a simple polyhedron in which each face is either a pentagon or a
hexagon. Show that there must be exactly twelve pentagons.

5.2 Consider the full symmetry of the cube. Show that all permutations of the
principal diagonals can be realized by using only two symmetries of the cube.



Chapter 6
(External) Direct Product

AbstractWe will review a way of making groups by multiplying groups.

6.1 Products

Definition 6.1 In set theory, the Cartesian product of two sets � and �, denoted
� × �, is the set of all ordered pairs (0, 1) where 0 ∈ � and 1 ∈ �. That is,

� × � = {(0, 1) | 0 ∈ �, 1 ∈ �}.

One can also take the Cartesian product of the elements of two groups. We would
like to turn the resulting set into a group.

Proposition 6.1 Let � and � be groups. The (external) direct product � × � is
the set of ordered pairs {(6, ℎ) |6 ∈ �, ℎ ∈ �} equipped with the binary operation
(6, ℎ) (6′, ℎ′) = (66′, ℎℎ′). This is a group.

Proof • Associativity holds because it is associative in each "slot" separately, so
it holds in total.

• Let 4� be the identity element of � and let 4� be the identity element of �.
Then (4� , 4� ) is the identity element of � × �.

• Given any (6, ℎ) ∈ � × �, the inverse is (6−1, ℎ−1). �

Remark: To be completely formal, we could say the following. Let (�,�, 4�) and
(�,★, 4� ) be groups. Then we could consider the Cartesian product � × �, and
define the binary operation � : � × � → � × � defined by

(6, ℎ) � (6′, ℎ′) = (6 � 6′, ℎ ★ ℎ′). (6.1)

Then the group could be denoted (� × �, �, (4� , 4� )). While the formality is
nice, it gets tedious to write all that out all the time so the theorems are proved
using multiplicative notation. It is understood that the multiplicative notation in the
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theorems and proofs stands for the relevant binary of the relevant group, as specified
by the context. For example, 66′ is understood to require the binary operation of �
and ℎℎ′ is understood to require the binary operation of�. In general, the two groups
and binary operations could be different. For example, � could be a group where
the binary operation is modular multiplication while � could be a group where the
binary operation is addition.

Note: If � and � are finite groups, then the order of |� × � | = |� | · |� |.

Proposition 6.2 � × � is abelian if and only if � and � are abelian.

Proof Consider 61, 62 ∈ � and ℎ1, ℎ2 ∈ � and note that

(61, ℎ1) (62, ℎ2) = (6162, ℎ1ℎ2) = (6261, ℎ2ℎ1) = (62, ℎ2) (61, ℎ1) (6.2)

holds if and only if � and � are abelian. �

Example 6.1 Consider Z2 × Z2. This is abelian by Proposition 6.2. Z2 × Z2 is called
the Klein four-group. It has order 2 · 2 = 4 (hence the name). The elements of the
group are the identity (0, 0) and three elements (1, 0), (0, 1), (1, 1) of order 2.

These ideas can be generalized to a finite number of groups �1, . . . , �= by
defining

�1 × · · · × �= (6.3)

to be the set of all elements (61, . . . , 6=) with 68 ∈ �8 for all 8 = 1, . . . , = and defining
the group binary operation to be the "obvious" one.

Proposition 6.3 Let � and � be groups. Then � × � � � × �.

Proof Define q : � × � → � × � by

q((6, ℎ)) = (ℎ, 6) (6.4)

for all (6, ℎ) ∈ � × �. Verify that q is an isomorphism. �

Proposition 6.4 Let � and � be groups and consider � ×�. Define �̃ ⊆ � ×� as
�̃ = {(6, 4� ) | 6 ∈ �} and �̃ ⊆ � × � as �̃ = {(4� , ℎ) | ℎ ∈ �}. We write 4�
and 4� here to emphasize that the groups are, in general, different. Then

i) �̃ is isomorphic to �.
ii) �̃ is isomorphic to �.

Proof i) Define q : �̃ → � by q((6, 4� )) = 6 for every (6, 4� ) ∈ �̃. Verify that
q is an isomorphism.

ii) Define q : �̃ → � by q((4� , ℎ)) = ℎ for every (4� , ℎ) ∈ �̃. Verify that q is an
isomorphism. �
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Consider the Klein four-group. From Example 6.1 we see that the Klein four-
group has no element of order 4, so Z2 × Z2 is not the same as (is not isomorphic
to) Z4. However, a group of the form Z< × Z= could very well be (isomorphic to) a
cyclic group.

Proposition 6.5 Z3 × Z5 is cyclic. In particular, Z3 × Z5 � Z15.

Proof Verify by brute force calculation that 〈(1, 1)〉 = Z3 × Z5. �

Is there a way to know when Z< × Z= � Z<= without having to find the order of
every element and seeing if the order is <=? Yes. Before we prove things, we need
a lemma.

Lemma 6.1 Let <, = ∈ Z with <, = > 0. Then gcd(<, =) · lcm(<, =) = <=.

Proof Recall that the Fundamental Theorem of Arithmetic says that for any 2 ∈ Z
with 2 > 1 can be factored uniquely into a product of primes. Consider the prime
factorization of

< = @
W1
1 @

W2
2 . . . @

W 9

9
, (6.5)

= = A
X1
1 A

X2
2 . . . A

X:
:
. (6.6)

Let us consider all the distinct primes that appear in these factorizations and label
them ?1, . . . , ?B . Then

< = ?
U1
1 ?

U2
2 . . . ?UBB , (6.7)

= = ?
V1
1 ?

V2
2 . . . ?

VB
B , (6.8)

where the exponents belong to N. If ?8 for some 8 = 1, 2, . . . , B does not appear in
the prime factorization, the exponent is 0. We note that

gcd(<, =) = ?min(U1 ,V1)
1 ?

min(U2 ,V2)
2 . . . ?

min(UB ,VB)
B , (6.9)

lcm(<, =) = ?max(U1 ,V1)
1 ?

max(U2 ,V2)
2 . . . ?

max(UB ,VB)
B . (6.10)

We note that

min(U8 , V8) +max(U8 , V8) = U8 + V8 (6.11)

for 8 = 1, 2, . . . , B, proving the claim. �

Example 6.2 Let < = 4200 and = = 660. Then < = 23 ·3 ·52 ·7 and = = 22 ·3 ·5 ·11.
Therefore, we see that

4200 = 23 · 31 · 52 · 71 · 110 (6.12)

660 = 22 · 31 · 51 · 70 · 111. (6.13)

Using Lemma 6.1,
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gcd(4200, 660) = 2min(3,2) · 3min(1,1) · 5min(2,1) · 7min(1,0) · 11min(0,1) (6.14)

= 22 · 31 · 51 · 70 · 110

= 60

lcm(4200, 660) = 2max(3,2) · 3max(1,1) · 5max(2,1) · 7max(1,0) · 11max(0,1) (6.15)

= 23 · 31 · 52 · 71 · 111

= 46200.

Theorem 6.1 Z< × Z= � Z<= if and only if gcd(<, =) = 1.

Proof Let ; = lcm(<, =). We claim that every element of Z< × Z= has order less
than or equal to ;. This is true because (;0 (mod <), ;1 (mod =)) = (0, 0) since
< | ; ⇒ < | ;0 and = | ; ⇒ = | 1;. But ; = <=/gcd(<, =).

• Case 1: If gcd(<, =) > 1, then ; < <= so every element in Z< × Z= has order
less than <= so Z< × Z= cannot be cyclic.

• Case 2: If gcd(<, =) = 1 then the order of (1, 1) is the least : such that
(:, :) = (0, 0) which means < | : and = | : . Thus, ; | : and the smallest such
(positive) : is ; = <=/gcd(<, =) = <= itself. �

Example 6.3 Given q : Z<= → Z< × Z= an isomorphism, how do we find q−1?
That is, given G ∈ Z< and H ∈ Z= what is : (mod <=) such that : ≡ G (mod <)
and : ≡ H (mod =)? If Z< × Z= � Z<=, then gcd(<, =) = 1 so ∃B, C ∈ Z such that
B< + C= = 1. Note that C= ≡ 1 (mod <), C= ≡ 0 (mod =) so q(C=) = (1, 0). Note that
B< ≡ 0 (mod <), B< ≡ 1 (mod =) so q(B<) = (0, 1). But for ∀(G, H) ∈ Z< × Z=,
we have (G, H) = G(1, 0) + H(0, 1) so

q(C=G + B<H) = Gq(C=) + Hq(B<) = G(1, 0) + H(0, 1) = (G, H). (6.16)

Thus, : ≡ C=G + B<H (mod <=).

Example 6.4 Using notation as above, if < = 3, = = 5 then (2 · 3) + (−1 · 5) = 1 and
B< = 6, C= = 5. Thus, : = −5G + 6H (mod <=).

Theorem 6.2 If gcd(<, =) = 1 then Z×<= � Z×< × Z×= .

Proof See Problem 6.6. �

Here is a useful theorem for knowing when a group � is isomorphic to an
external direct product of two groups. If � and � are subsets of a group�, we define
�� = {ℎ 9 | ℎ ∈ �, 9 ∈ �}.

Definition 6.2 Let � and � are subgroups of � and suppose

i) � = ��.
ii) � ∩ � = {4}.
iii) ℎ 9 = 9 ℎ for any ℎ ∈ � and 9 ∈ �.
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We say that � = �� is an internal direct product of � and �.

Theorem 6.3 If � and � are subgroups of � and

i) � = ��.
ii) � ∩ � = {4}.
iii) ℎ 9 = 9 ℎ for any ℎ ∈ � and 9 ∈ �.

Then � = �� � � × �.

Proof Weclaim that q : �×� → �� defined by q((ℎ, 9)) = ℎ 9 for any (ℎ, 9) ∈ �×�
is an isomorphism.

• It is surjective since any G ∈ �� is equal to G = ℎ 9 for some ℎ ∈ � and 9 ∈ �.
Then clearly q((ℎ, 9)) = ℎ 9 = G.

• It is injective since if q((ℎ1, 91)) = q((ℎ2, 92)) then ℎ1 91 = ℎ2 92, which implies
that ℎ−1

2 ℎ1 = 92 9
−1
1 ∈ � ∩ �. However, � ∩ � = {4} so this implies ℎ−1

2 ℎ1 = 4

and 92 9−1
1 = 4.

• q is a homomorphism since for any (ℎ1, 91), (ℎ2, 92) ∈ � × �

q((ℎ1, 91) (ℎ2, 92)) = q((ℎ1ℎ2, 91 92)) (6.17)
= ℎ1ℎ2 91 92

= ℎ1 92ℎ2 92

= q((ℎ1, 91))q((ℎ2, 92))

where we have used iii) for the third equality. Therefore, � × � � �� = �. �

The reader might have wondered why the chapter says (external) direct products.
In the rest of the text, we will often use the external direct product notation whenever
we say "direct product." We will sometimes be pedantic and write "... (external)
direct product..." instead of leaving it implied. The above theorem states that internal
direct products of two (sub)groups and the external direct products of (isomorphic
copies) of those two (sub)groups are the same notions if they have the properties
stipulated in the theorem. In such cases, it means we can write "direct product" and
not bother mentioning "internal" or "external."

The previous theorem has many uses, as you will find out through problems
throughout the text. Here is another use.

Example 6.5 $3 � ($3 × Z2. This is because −�3×3 ∉ ($3, 〈−�3×3〉 � Z2, and
clearly any scalar multiple of the identity commutes with any other matrix. By
Theorem 6.3, $3 � ($3 × Z2. Actually, $= � ($= × Z2 for all odd integers = ≥ 3
since −�=×= ∉ ($= whenever = is odd so Theorem 6.3 is applicable. What if = is
even? See Problem 6.8.

Example 6.6 Consider a Platonic solid with its center at the origin of R3. Consider
the map 5 : R3 → R3 defined by 5 (r) = −r. Such a map sends all the Platonic
solids except for the tetrahedron back to themselves. We say that the Platonic solids
except for the tetrahedron have inversion symmetry. A matrix representing this map
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is −�3×3. This matrix clearly commutes with any other 3 × 3 matrix. Let � be the
set of all rotation symmetries of a solid. Let � be the subgroup of the symmetry
group generator by the inversion map 5 .We see that every element of � commutes
with every element of �. Let � be the full symmetry group of a solid. This means
we include rotational symmetries as well as inversion symmetry. This means that
every symmetry in � can be written as a some element in ��. By Theorem 6.3,
�� � �× �. Therefore, the full symmetry group of the solid is� � �× � � �×Z2.

Example 6.7 The rotational symmetry group of the cube and octahedron is (4. The
full symmetry group is (4 × Z2.

Example 6.8 The rotational symmetry group of the dodecahedron and icosahedron
is �5. The full symmetry group is �5 × Z2.

Inversion is not a symmetry of the tetrahedron, but the reader might wonder if
the full symmetry group of the tetrahedron is still �4 × Z2 but one just can’t deduce
it using Theorem 6.3. It is not. The full symmetry group of the tetrahedron is (4.
Let � = (4 and � = �4. WLOG, choose an odd permutation, say (1 2), and let
 = 〈(1 2)〉. Then � = � , � ∩  = {4}, but (1 2) does not commute with every
element of �. For example,

(1 2) (2 3 4) = (2 3 4 1) (6.18)
(2 3 4) (1 2) = (1 3 4 2). (6.19)

Actually, one has what is called a semidirect product (4 � �4 o Z2. We haven’t
covered semidirect products, so don’t worry about this for now.

Problems

6.1 a) Use Theorem 6.1 and Proposition 4.5 to show that there is an isomorphism

q : Z2014962 → Z2019 × Z998

of additive groups with q(1) = (1, 1).
b) Princeton University received its charter in October 1746. Find the : ∈ Z2014962

such that q(:) = (1746, 10). (Hint: Example 6.3 is useful here.)

6.2 a) Use Theorem 6.1 and Proposition 4.5 to show that there is an isomorphism

q : Z138195 → Z1665 × Z83

of additive groups with q(1) = (1, 1).
b) Isaac Newton was born on December 25, 1642 (in the old calendar). Find the
: ∈ Z138195 such that q(:) = (12, 1642). (Hint: Example 6.3 is useful here.)

6.3 a) Find the order of the group Z×2015. (Hint: 31 | 2015.)
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b) Find the inverse of 29 in Z×2015.

6.4 Prove that C is isomorphic to R × R.

6.5 Prove that C − {0} is isomorphic to R+ × �, where � = {I ∈ C× | |I | = 1} by
constructing an isomorphism q : C× → R+ × �.

6.6 a) Suppose that that <, = are positive integers such that gcd(<, =) = 1. Prove
that Z×<= � Z×< × Z×= .

b) Use the previous part to argue that Z×20 is isomorphic to Z4 × Z2. (No, there is
no × missing on Z4 or Z2.)

6.7 The multiplicative group C − {0} is denoted either C× or C∗, We know that
� = {I ∈ C× | |I | = 1} is a subgroup of C×. Draw the the left coset (24 + 388)� in
C×. Let q : C× → R+ ×� be the isomorphism from Problem 6.5 and find the subset
q((24 + 388)�) ⊂ R+ × �.

6.8 What goes wrong when = is even so that one cannot invoke Theorem 6.3? Show
that ($= × Z2 � $= when = is even.

6.9 Show that �2= � �= × Z2 when = ≥ 3 and = odd.





Chapter 7
Equivalence Relations and Partitions

Abstract This chapter reviews a way of breaking up a set into a union of disjoint
sets.

7.1 Equivalence Relation

Definition 7.1 Let ( be any set. An equivalence relation on ( is a relation that
satisfies the following conditions for any G, H, I ∈ (:
i) G ∼ G (reflexivity).
ii) If G ∼ H then H ∼ G (symmetry).
iii) If G ∼ H and H ∼ I then G ∼ I (transitivity).

Example 7.1 Love is not an equivalence relation.

Proposition 7.1 Let � be a group. Let � be a subgroup of �. For G, H ∈ � define
G ∼ H if ∃ℎ ∈ � such that G = Hℎ. Such a definition gives an equivalence relation.

Proof i) For any G ∈ �, G = G4 so G ∼ G.
ii) If G ∼ H then G = Hℎ for some ℎ ∈ �. This then means that H = Gℎ−1. But

ℎ−1 ∈ � since � is a subgroup (closed under inverses). Thus, H ∼ G.
iii) If G ∼ H and H ∼ I then G = Hℎ1 and H = Iℎ2 for some ℎ1, ℎ2 ∈ �. Therefore, G =

Iℎ2ℎ1. But ℎ2ℎ1 ∈ � since � is a subgroup (closed under group multiplication).
�

Example 7.2 Let � = (Z, +, 0) and = > 0, � = =Z. In this case, the relation ∼ is
called congruence modulo = and we write G ≡ H (mod n) instead of G ∼ H. In fact,
G ≡ H if and only if = | (G − H).

Definition 7.2 Let ∼ be an equivalence relation on (. For any G ∈ (, the equivalence
class of G is {H ∈ ( | H ∼ G}, often denoted [G].

Example 7.3 For ≡ (mod n), the equivalence classes are [0], [1], . . . , [= − 1].

73
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7.2 Cosets

Cosets are important equivalence classes in group theory.

Definition 7.3 Let � be a subgroup of �. The set

6� = {6ℎ | ℎ ∈ �} ⊆ �

is called a left coset of � in �. The set

�6 = {ℎ6 | ℎ ∈ �} ⊆ �

is called a right coset of � in �.

Definition 7.4 Let � be a group and let � be a subgroup of �. We denote the set of
all (distinct) left cosets of � in � by �/�. We denote the set of all (distinct) right
cosets of � in � by �\�.

Note that�/� is a set of elements, those elements themselves being sets (namely,
the left cosets of � in �). Definition 7.3 uses multiplicative notation. Let us restate
the definition using the binary operation.

Definition 7.5 Let � be a group with a binary operation � : � × � → �. Recall
that the image of (G, H) ∈ � × � is denoted by G � H instead of �(G, H). Let � be a
subgroup of �. The set

6 � � = {6 � ℎ | ℎ ∈ �} ⊆ �

is called a left coset of � in �. The set

� � 6 = {ℎ � 6 | ℎ ∈ �} ⊆ �

is called a right coset of � in �.

Why restate the definition this way? This is because many theorems are proven
using the multiplicative notation but some examples use additive notation. It is
important to note that the binary operation in theorems is not multiplication in the
usual or modular sense. The multiplicative notation is just a choice of notation for
the binary operation of the group. This is emphasized here to try to dispel some
confusion that might arise during first exposure to these ideas.

Example 7.4 Let � = (Z, +, 0) and � = 4Z. Then

�/� = Z/4Z = {4Z, 1 + 4Z, 2 + 4Z, 3 + 4Z}. (7.1)

Notice that in the additive notation, the left cosets are written as 6 + � instead of
6�.



7.2 Cosets 75

In the above example, notice that one could write 4 + 4Z instead of 4Z, or 6 + 4Z
instead of 2 + 4Z. This leads to the following general observation: for a subgroup
� of �, 61 + � = 62 + � does not imply that 61 = 62. That is, there might be (and
usually are) multiple 6 ∈ � such that 6 + � result in the same left coset.

Left cosets are equivalence classes of an equivalence relation. If� ≤ � and G ∼ H
means G = H � ℎ for some ℎ ∈ � then [H] = {H � ℎ | ℎ ∈ �}. This is H � �, a left
coset of � in �. Right cosets are equivalence classes of an equivalence relation. If
� ≤ � and G ∼ H means G = ℎ � H for some ℎ ∈ �, then [H] = {ℎ � H | ℎ ∈ �}.
This is � � H, a right coset of � in �. Let us see another example, this time using
multiplicative notation.

Example 7.5 Let � = (3 and � = 〈(1 2)〉 = {4, (1 2)}. Then

4� = {4, (1 2)}, (7.2)
(1 3)� = {(1 3), (1 2 3)}, (7.3)
(2 3)� = {(2 3), (1 3 2)}. (7.4)

The right cosets partition (3 into disjoint sets �4, � (1 3), � (2 3). However, note
that

�4 = {4, (1 2)}, (7.5)
� (1 3) = {(1 3), (1 3 2)}, (7.6)
� (2 3) = {(2 3), (1 2 3)}. (7.7)

Therefore, we see that while 4� = �4 (this is always true), (1 3)� ≠ � (1 3) and
(2 3)� ≠ � (2 3). Therefore, we see that left cosets are not necessarily equal to right
cosets.

Note: It is not necessarily true that, for arbitrary groups� and subgroups � ≤ �,
H� = �H for ∀H ∈ � (Example 7.5 is an explicit example demonstrating this). It
is true for abelian groups, but for non-abelian groups one needs to be more careful.
We will see later (in Chapter 10) that H� = �H for ∀H ∈ � when � is (to be defined
later) a normal subgroup of �, denoted � E �.

Note: Cosets are not usually/necessarily subgroups. For one, a subgroup must
contain the identity element. In particular, a coset in �/� is a subgroup if and only
if it contains 4 if and only if it is 4� = �. (If 4 ∈ G�, then there exists ℎ ∈ � such
that 4 = Gℎ, so G−1 = ℎ ∈ �. Since � is a subgroup, it is closed under inverses and
hence contains (G−1)−1 = G. Therefore, G� = � by Theorem 7.1 proved below.)

Important Note: The notation �/� will be used in two ways. It denotes the set
of all (distinct) left cosets of � in �. These left cosets may also have the structure
of a group, as we shall see in Chapter 10. When they have the structure of a group,
we also denote them as �/� and call it the quotient group of � by �. That is, when
you see �/� you can always think of it as the set of all (distinct) left cosets of �
in �, but don’t always assume that it is a quotient group unless � is, as we will see
later, a normal subgroup of �.
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Let us collect some properties of left cosets. We switch back to multiplicative
notation when proving general properties of groups. This is for convenience so that
one does not have to keep writing �. Do note that the results, as usual, can be
translated into any binary operation notation by replacing the multiplicative notation
with your favorite symbol.

Theorem 7.1 Let � be a group (finite or infinite) and let � be a subgroup of �.
Then, for any G, H ∈ �,

i) G ∈ G�.
ii) G� = H� ⇐⇒ G−1H ∈ �.
iii) if G� ≠ H� then G� ∩ H� = ∅.

Proof i) Since � ≤ �, 4 ∈ �. Therefore, G� contains G4 = G.
ii) ⇒ Suppose that G� = H�. This means that there exists ℎ ∈ � such that Gℎ = H4.

Therefore, G−1H = ℎ ∈ �.
⇐ Suppose that G−1H ∈ �. This means that there exists ℎ ∈ � such that
G−1H = ℎ. Therefore, H� = Gℎ� ⊆ G�, where we used ℎ� ⊆ � since � is a
subgroup and, hence, closed under multiplication. Likewise, G� = Hℎ−1� ⊆ H�
for the same reasons (ℎ−1 ∈ � since � is a subgroup and then closure under
multiplication). Therefore, G� = H�. One could also note that ℎ� = � for all
ℎ ∈ � since left multiplication is a bĳective map when the the domain and range
are the same (sub)group, which gives H� = Gℎ� = G�.

iii) Suppose that G� ≠ H�. If G� ∩ H� ≠ ∅, then there exists a I ∈ G� ∩ H� such
that I = Gℎ1 and I = Hℎ2 for some ℎ1, ℎ2 ∈ �. Thus, G−1H = ℎ1ℎ

−1
2 ∈ � since �

is a subgroup (and, hence, closed under group binary operation and inverses). By
part ii), thiswould thenmean G� = H�, a contradiction. Therefore, G�∩H� = ∅.
�

The second part of the previous theorem implies for � ≤ � that if � = 4� = G�

for some G ∈ �, then 4−1G ∈ �. That is, G� = � implies that G ∈ �. This is a useful
fact to remember when dealing with expressions involving left cosets.

Corollary 7.1 Let � be a group and let � be a subgroup of �. Then

� =
⋃
6∈�

6�.

Proof This follows from the previous theorem since 6 ∈ 6�. Running through all
6 ∈ � guarantees that each 6 ∈ � shows up in some left coset(s). �

7.3 Partitions

Definition 7.6 Let ( be a nonempty set. A partition of ( is a collection of subsets
(8 ⊆ ( such that
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i) (8 ≠ ∅ for ∀8.
ii) ∪8(8 = (
iii) (8 ∩ ( 9 = ∅ for 8 ≠ 9 .

Proposition 7.2 The equivalence classes of an equivalence relation are a partition
of (.

Proof We must show that the equivalence classes of any set ( satisfy the above
properties in the definition. Label the elements of ( by ( = {G1, G2, · · · }.

i) Let [G8] be the equivalence class determined by G8 . Then G8 ∈ [G8] so it is
nonempty.

ii) Clearly, ∪8 [G8] = (. If we only let 8 go over elements that determine distinct
elements, this will clearly still be true.

iii) Let [G] be an equivalence class determined by G and let [G ′] be an equivalence
class determined by G ′. We claim that either [G] ∩ [G ′] = ∅ or [G] = [G ′] .
Suppose [G] ∩ [G ′] ≠ ∅. Pick H ∈ [G] ∩ [G ′] . Then H ∼ G and H ∼ G ′. By
symmetry, G ∼ H. But transitivity, G ∼ H and H ∼ G ′ implies G ∼ G ′. Pick any
element 0 ∈ [G] . Then 0 ∼ G. By transitivity, 0 ∼ G and G ∼ G ′ implies 0 ∼ G ′,
so 0 ∈ [G ′] . Since 0 ∈ [G] was arbitrary, we conclude [G] ⊆ [G ′] . By symmetry,
G ∼ G ′ implies G ′ ∼ G. Now pick 1 ∈ [G ′] . Then 1 ∼ G ′. By transitivity, 1 ∼ G ′
and G ′ ∼ G implies 1 ∼ G, so 1 ∈ [G] . Since 1 ∈ [G ′] was arbitrary, we conclude
[G ′] ⊆ [G] . Therefore, [G] = [G ′] . �

Proposition 7.3 Given a partition {(8} of (, define a relation G ∼ H on ( if and only
if G ∈ ( belongs to the same (8 as H ∈ (. That is, G ∼ H if and only if G ∈ (8 and
H ∈ ( 9 and 8 = 9 . Then ∼ is an equivalence relation. It is called the equivalence
relation induced by the partition.

Proof One must show that the equivalence classes of any set ( satisfy the above
properties in the definition.

i) Let G ∈ (. Since ( = ∪8(8 , there exists some 9 such that G ∈ ( 9 . Clearly G ∼ G
since G does indeed belong to the same set ( 9 that G belongs to. Thus, ∼ is
reflexive.

ii) Suppose G, H belong to the same set ( 9 . Then it is clear that G ∼ H and H ∼ G.
Thus, ∼ is symmetric.

iii) Suppose that G ∼ H and H ∼ I. Then G, H ∈ (8 for some 8.Also, H, I ∈ ( 9 for some
9 . However, (8 ∩ ( 9 = ∅ for 8 ≠ 9 for a partition. Therefore, H ∈ (8 and H ∈ ( 9
implies 8 = 9 . This then means that G, I ∈ (8 so G ∼ I. Thus, ∼ is transitive.

This shows that ∼ is reflexive, symmetric, and transitive. Hence, it is an equivalence
relation, by definition. �

Corollary 7.2 If � ≤ �, then the left cosets of � in � form a partition of �.

Maybe afigure can provide some intuition on the relationship between equivalence
classes and partitions. See Figure 7.1.
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Fig. 7.1: We can mentally collect the points of the set ( and bundle them together
depending onwhether they are equivalent or not under the given equivalence relation.
If the equivalence classes are left cosets of a subgroup � ≤ �, then Corollary 7.3
states that all the left cosets have the same size, as (roughly) in this figure ("size"
in this figure being the area). In general, the equivalence classes of an equivalence
relation need not all be of the same size.

Proposition 7.4 Let� be a group,� ≤ �, and 61, 62 ∈ �. Themap 5 : 61� → 62�
defined by 5 (G) = 626

−1
1 G is a bĳection.

Proof Any element in 61� is 61ℎ for some ℎ ∈ �. The maps sends 61ℎ to 62ℎ.
Letting ℎ run through all values in � shows that this maps is surjective. It is injective
since if 5 (G) = 5 (H) then 626

−1
1 G = 626

−1
1 H and, since � is a group so 626

−1
1 ∈ �

has an inverse, therefore G = H. �

Corollary 7.3 We can say that any two left cosets of � ≤ � have the same number
of elements with the understanding that this means there exists a bĳection between
the two cosets. In particular, if � is a finite group (and so � is a finite subgroup)
then |61� | = |62� | for any 61, 62 ∈ � so that they indeed have the same number of
elements in the discrete math sense.

Remark: To reiterate, when sets are finite the notion of being of the same size is
clear. When dealing with infinities, it doesn’t make sense to say ∞ = ∞ and that,
therefore, the sizes are the same. For example, N has infinite size as does R but
N ⊂ R. Do they have the "same size"? This requires us to rethink what it means
for two sets (1 and (2 to be of the same size. Being able to pair each element in
(1 with an element in (2 in a one-to-one and onto way (that is, with a bĳection)



7.4 Lagrange’s Theorem 79

seems like a good idea. It turns out that there is no bĳection between N and R.1,2,3
If this stuff is new to the reader leaves the reader asking "if N has infinite elements,
how does it ’run out’ of elements to map to elements in R" or something like that,
I recommend learning about Cantor’s diagonal argument. (The Wikipedia page on
Cantor’s diagonal argument might be a good place to start.)

Definition 7.7 The number of cosets of � in � is called the index of � in � and is
denoted [� : �].

Example 7.6 If � = (3 and � = 〈(1, 2)〉 then [� : �] = 3. Note that |� | = 3! =
6, |� | = 2 and [� : �] = 3 = 6 ÷ 2 = |� | ÷ |� |.

7.4 Lagrange’s Theorem

Theorem 7.2 Lagrange’s Theorem - Let� be a finite group (this proof does not work
if |� | is infinite). Let � be a subgroup of �. Then |� | divides |� |. (Important: Note
that � is a finite group.)

Proof Partition � into left cosets of � in �. Any two cosets have the same size.
Namely, all cosets have the same size |4� | = |� |. Thus, � = : · |� | for some : ∈ Z
(determined by how many cosets are in the partition of �). Since � is finite, : is
finite. Thus, |� | divides |� |. �

Note: We just proved |� | = [� : �] · |� | for finite groups. Rearranging,

[� : �] = |� |/|� | (7.8)

for finite groups �, � ≤ �. Thus, the notation makes it easy to remember as
we can just think of : as meaning /. If � is an infinite group, then |� |/|� | isn’t
helpful/meaningful. For example, suppose that � is an infinite group and � ≤ � is
a subgroup which is infinite. What does∞/∞ mean? In math, expressions such as

∞−∞, 0
0
,
∞
0
,
∞
∞ (7.9)

are called indeterminate forms. (Do you remember learning L’Hopital’s rule?)

Theorem 7.3 Let � be a finite group and pick any 6 ∈ �. Then |6 | divides |� |.

Proof The order of 6 is the order of 〈6〉 and 〈6〉 ≤ �. Apply Lagrange’s theorem.�

Proposition 7.5 Let � be a finite group and pick any 6 ∈ �. Then 6 |� | = 4.

1 Fun fact: It turns out that there is a bĳection between N and Z. Colloquially, there are the same
number of integers as positive integers.
2 Fun fact: It turns out that there are the same number of natural numbers as even natural numbers.
That is, |N | = |2N |. To prove this, note that 5 : N→ 2N defined by 5 (=) = 2= is a bĳection.
3 Fun fact: It turns out that there is a bĳection between Z and Q. Colloquially, there are the same
number of integers as rational numbers.
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Proof By Theorem 7.3, |� | = : |6 | for some : ∈ Z. Therefore,

6 |� | = 6: |6 | = (6 |6 |): = 4: = 4. (7.10)

�

Remark: For finite groups �, this proposition puts a bound on |6 |. This, however,
is not a sharp upper bound.

Example 7.7 For any 6 ∈ (3, 6
6 = 4. This, however, is not a sharp upper bound. For

example, (0 1)2 = 4, (0 1 2)3 = 4 in (3. (3 has elements of order at most 3, and not
|(3 | = 6.

Note: It is important to realize what Lagrange’s theorem does and does not say.
Lagrange’s theorem tells us that if� ≤ � then |� | divides |� |. It is not true, however,
that if < divides |� | then there ∃� ≤ � with |� | = <.

Example 7.8 If� = �4 then |� | = 4!/2 = 12. If� ≤ � thenwe know, by Lagrange’s
theorem, that the only potential values of � are {1, 2, 3, 4, 6, 12}. However, �4 has
no subgroup of order 6 (see the following proposition).

Proposition 7.6 �4 has no subgroup of order 6.

Proof We prove this using simple counting as well as Lagrange’s theorem. Suppose
that � ≤ �4 is a subgroup of order 6. If a 3-cycle belongs to �, then its inverse,
which is also a 3-cycle, must also belong to � since � is a subgroup. This means
that the number of 3-cycles is � is always even.

• There cannot be six 3-cycles, since every subgroup must contain the identity
element 4.

• Suppose that there are four 3-cycles in �, label them U, U−1, V, V−1. Together
with 4, this is a total of five elements. However, � is a subgroup so it must
be closed under the group binary operation, which means that UV and UV−1

must also belong to �. Note that UV and UV−1 are distinct from the previous
five elements for otherwise we would have, for example, that UV = U which
would imply V = 4, a contradiction. Running through all the other options leads
to similar contradictions, proving that UV, UV−1 are new and distinct elements.
This then means that

{4, U, U−1, V, V−1, UV, UV−1} ⊆ �, (7.11)

which is already more than six elements. Thus, � cannot contain four 3-cycles.
• Suppose that � contains two 3-cycles. Together with the identity, this is a total
of three elements. We need three more elements to satisfy |� | = 6. We cannot
include any more 3-cycles, so that means that the remaining three elements in
�4 are the elements with the cycle shape (••)(••). There are ( 4·32

2·1
2 )

1
2! = 3

such elements. Namely,

(1 2) (3 4), (1 3) (2 4), (1 4) (2 3) (7.12)
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are the only elements of �4 that have the cycle structure (••)(••). Thus, these
must be the elements that belong to �. However, notice that

{4, (1 2) (3 4), (1 3) (2 4), (1 4) (2 3)} (7.13)

forms a subgroup of �4 and, more importantly, of �. By Lagrange’s theorem, 4
divides |� |. This leads to a contradiction since, by assumption, |� | = 6 which
is not divisible by 4. Thus, � cannot contain only two 3-cycles.

This exhausts all the options, proving that �4 cannot have a subgroup � ≤ �4 of
order 6. �

Theorem 7.4 Every group of prime order is cyclic.

Proof Suppose |� | = ? for some prime number ?. Pick 6 ∈ � with 6 ≠ 4. Then
|6 | ≠ 1 (4 is the only element with order 1). By Lagrange’s theorem, |6 | divides
|� | = ?. Therefore, |6 | = ? and so � = 〈6〉. �

Lagrange’s theorem is extremely restrictive on finite groups of small size.

Theorem 7.5 Every group of order 4 is isomorphic to one of (Z4, +, 0) or the Klein
four-group.

Proof Case 1: If � has an element of order 4 then � is cyclic.
Case 2: Suppose� does not have an element of order 4. By Lagrange’s theorem, the
only possible orders for the elements of � are 1 or 2. Let us label the elements of �
as � = 4, G, H, I where G, H, I have order 2. What is GH?

• If GH = 4, then H = G−1 = G−14 = G−1G2 = G, a contradiction.
• If GH = G, then H = 4, a contradiction.
• If GH = H, then G = 4, a contradiction.
• If GH = I, then (GH)−1 = I−1 ⇒ H−1G−1 = I−1 ⇒ HG = I. This means � is
isomorphic to the Klein four-group. �

Using the theorems that we learned so far, we are now able to classify some finite
groups, up to isomorphisms. See Table 7.1. We will fill some of the other unknowns
as we prove more properties of groups.

Problems

7.1 a) Let � = �4 and � = {4, (1 2) (3 4), (1 3) (2 4), (1 4) (2 3)}. Work out the
(distinct) left and right cosets of � in �.

b) Let � = �4 and � = {4, (1 2 3), (1 3 2)}.Work out the (distinct) left and right
cosets of � in �.

7.2 Let � be a group. Show that � cannot have a subgroup � with |� | = |� | − 1 if
|� | ≠ 2.
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Table 7.1: Classification of some groups, up to isomorphisms.

|G| How many? What are they?
1 1 {e}
2 1 Z2
3 1 Z3
4 2 Z4, Z2 × Z2
5 1 Z5
6 later... later...
7 1 Z7
8 later... later...
9 later... later...
10 later... later...
11 1 Z11
12 later... later...
13 1 Z13
14 later... later...
15 1 Z15

7.3 Let � and  be finite subgroups of a group �. Suppose that gcd( |� |, | |) = 1.
Prove that � ∩  = {4}.

7.4 a) Suppose  is a proper subgroup of � (denoted  < �) and � is a proper
subgroup of � (denoted � < �). If | | = 42 and |� | = 420, what are the
possible orders of �?

b) Give an example of groups  ,� with | | = 42 and |� | = 420 and subgroups �
of all possible orders which satisfy  < � < �.

7.5 Let � be a subgroup of a finite group �. Suppose 6 ∈ � and = is the smallest
positive integer such that 6= ∈ �. Prove that = divides the order of 6.

7.6 Let � be a subgroup of �.

a) Show that the function � → � given by G ↦→ G−1 carries the left coset 6� to
the right coset �6−1 and carries �6 to 6−1�.

b) Without looking at these notes or your notes, state the definition of the index
[� : �] of � in �. Explain how part a) shows it doesn’t matter whether you use
left or right cosets in this definition.

7.7 a) Let U be a :-cycle in (=. Prove that the order of the centralizer of U is
: · (= − :)!.

b) Find the centralizer of (1 2) (3 4) in (5. (Hint: Its order is 4.) To which familiar
group is it isomorphic to? Explain.

7.8 Let � be a finite abelian group, with |� | = =. Label the elements of � as
61, · · · , 6=.
a) Let 60, 61 ∈ � for some 0, 1. Prove that there exists an element in � with

order gcd( |60 |, |61 |). (Hint: Consider solving Problem 1.9, if you haven’t done
so already.)



7.4 Lagrange’s Theorem 83

b) Let

< = gcd( |61 |, . . . , |6= |).

Prove that there exists an element in � with order <. (Hint: Recall that if none
of =1, =2, =3 are zero, then

lcm(=1, =2, =3) = lcm(lcm(=1, =2), =3) = lcm(=1, lcm(=2, =3)).

From this, one can show that if none of =1, =2, . . . , =A is zero, then

lcm(=1, =2, . . . , =A ) = lcm(lcm(=1, . . . , =A−1), =A )

and similar expressions as well.)
c) Give an example of a finite non-abelian group where the previous conclusion

does not hold.

7.9 a) Prove that a group of order 63 must have an element of order 3. (Hint: If
6 has order any multiple of 3, then some power of 6 has order 3 (why?). If the
statement is false, then every has order relatively prime to 3 so...) If you know
Cauchy’s theorem, then this part is trivial. Solve this problem without using
Cauchy’s theorem.

b) Can a group of order 55 have exactly 20 elements of order 11?

7.10 Prove that �5 has no subgroup of order 30. (Hint: Suppose � ≤ �5 has order
30. For U ∈ �5 of order 3, if U ∉ �, consider � ∪ U�.)





Chapter 8
Cauchy’s Theorem

Abstract Let � be a group. We saw that if = divides |� | then, in general, we are not
guaranteed that there exists an element 6 ∈ � with |6 | = =. The story changes if = is
prime.

8.1 Cauchy’s Theorem

In this chapter, we will go over Cauchy’s theorem but postpone the proof of the
theorem until later (when we cover the Orbit-Stabilizer theorem).

Theorem 8.1 Cauchy’s theorem - Let � be a finite group. Let ? be a prime divisor
of |� |. Then � has an element of order ?.

Proof Later. Proved in Theorem 11.3 after the introduction and proof of the Orbit-
Stabilizer theorem. �

Remark: Cauchy’s theorem is a partial converse to Lagrange’s Theorem. The
Sylow theorems assert a slightly stronger partial (but still not full, as we have seen
is not possible) converse to Lagrange’s theorem: Let ? be a prime factor of |� | for a
finite group � and let : ∈ Z be the largest positive integer such that ?: divides |� |.
Then � contains a subgroup � ≤ � with |� | = ?: .

Example 8.1 Consider (4. It has order |(4 | = 4! = 24 = 8 · 3 = 23 · 3. By Cauchy’s
theorem, we conclude that (4 has at least one element of order 2 and at least one
element of order 3. (4 also has elements of order 4 but Cauchy’s theorem by itself
does not address this. Also note that Cauchy’s theorem does not tell how many times
a group contains an element of that order, just that it contains at least one element
with that order.

Cauchy’s theorem lets us classify more groups, up to isomorphisms.

Theorem 8.2 Let ? be an odd prime (so ? is prime and ? ≠ 2). Every group of order
2? is isomorphic to either Z2? or � ? .

85
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Proof Let� be a group of order 2?, where ? is an odd prime. By Cauchy’s theorem,
� contains an element of order ?, call it G, and an element of order 2, call it H. Let
� = 〈G〉, so |� | = ?. H ∉ � since 2 - ? by assumption. Therefore, H� ≠ � and
so � = � ∪ H�. By the same argument, � = � ∪ �H. Therefore, H� = �H ⇒
H�H−1 = �. This means they are equal as sets (and not necessarily as ordered sets).
That is, for any ℎ1 ∈ � there is some ℎ2 ∈ � such that Hℎ1H

−1 = ℎ2 with ℎ1 not
necessarily equal to ℎ2. Applying this to � = 〈G〉 means that HGH−1 = G: for some
: ∈ Z. The idea/trick is to conjugate G by H twice and use the fact that H2 = 4. That
is: H(HGH−1)H−1 = HG: H−1 = (HGH−1) · · · (HGH−1) = (G: ): = G:2 . Since H2 = 4, this
implies G = G:2 and, hence, :2 ≡ 1 (mod p). Thus, ? | (:2 − 1) ⇒ ? | (: − 1) (: + 1)
and, since ? is prime, this means either ? | (: − 1) or ? | (: + 1).

• Case 1: If : ≡ 1 (mod p), then HGH−1 = G: = G ⇒ HG = GH. Thus, � is
abelian. In particular, � � Z? × Z2. Since ? is an odd prime, gcd(2, ?) = 1 so
Z? × Z2 � Z2? . Therefore, � � Z2? is cyclic.
More systematically and abstractly, one could also solve Problem 8.1 and then
use the results here. Since� is a finite abelian group, we know that (see Problem
8.1) � has an element of order lcm(2, ?) = 2? (which is GH, as your solution to
Problem 8.1 might show). Thus, � = 〈GH〉 � Z2? .

• Case 2: If : ≡ −1 (mod p), then G? = 4, H2 = 4 and HGH−1 = G: = G−1. This is
isomorphic to � ? . �

This theorem lets us fill in our table a bit more.

Table 8.1: Classification of some groups, up to isomorphisms.

|G| How many? What are they?
1 1 {e}
2 1 Z2
3 1 Z3
4 2 Z4, Z2 × Z2
5 1 Z5
6 2 Z6, �3 � (3
7 1 Z7
8 later... later...
9 later... later...
10 2 Z10, �5
11 1 Z11
12 later... later...
13 1 Z13
14 2 Z14, �7
15 1 Z15
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Problems

8.1 Let � be an abelian group. Show that

a) For any 61, 62 ∈ �, there exists an element with order lcm( |61 |, |62 |).
b) Let |� | = # . Show that there exists an element in � with order lcm( |61 |, · · · ,
|6# |).

8.2 Give an example of a finite non-abelian group for which the conclusion of
Problem 8.1 does not hold.

8.3 Let � be a finite abelian group whose order is divisible by 10. Prove that � has
a cyclic subgroup of order 10.

8.4 Let 0 and 1 be elements of a group � such that 05 = 4, 010−1 = 12, and 1 ≠ 4.
What is the order of 1? (Hint: See the idea/trick in Theorem 8.2 for inspiration.)

8.5 Let � be a group of order 4= + 2. Use Cauchy’s theorem, Cayley’s theorem, and
Problem 3.10 to show that � contains a subgroup of order 2= + 1.

8.6 Let � be a group of order ?@A, where ?, @, and A are distinct primes. If � and
 are subgroups of � with |� | = ?@ and | | = @A, prove that |� ∩  | = @.





Chapter 9
Conjugacy

AbstractWe saw (in the proof of Cayley’s theorem) that a group can act on itself by
left translation. A group can also act on itself by conjugation.

9.1 Conjugacy

Definition 9.1 Let � be a group. We say G ∈ � is conjugate to H ∈ � if there exists
an element 6 ∈ � such that G = 6H6−1.

Proposition 9.1 Conjugacy is an equivalence relation.

Proof i) G = 4G4−1 for ∀G ∈ �. Thus, G ∼ G for ∀G ∈ �.
ii) If G ∼ H then there ∃6 ∈ � such that G = 6H6−1. Thus, H = 6−1G(6−1)−1. But

6−1 ∈ � since � is a group, so H ∼ G.
iii) Suppose G ∼ H and H ∼ I. Then there ∃61, 62 ∈ � such that G = 61H6

−1
1 and

H = 62I6
−1
2 . Thus, G = 6162I6

−1
2 6−1

1 = (6162)I(6162)−1. But 6162 ∈ � since �
is a group, so G ∼ I. �

Note: Some books define conjugation slightly different: G is conjugate to H if there
exists 6 ∈ � such that 6G6−1 = H. By Proposition 9.1, it doesn’t really matter.

Definition 9.2 The equivalence classes for conjugacy are called conjugacy classes
of �. The conjugacy class of G is [G] = {6G6−1 | 6 ∈ �}.

Since conjugacy is an equivalence relation and equivalence relations give parti-
tions, this means that the conjugacy classes of a group � are a partition of �.

Example 9.1 Let � be a group. Then {4} is always a conjugacy class of � since
646−1 = 4 for any 6 ∈ �.

Example 9.2 If � is an abelian group, each conjugacy class has only one element.
This is because, for ∀G ∈ �,

89
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[G] = {6G6−1 | 6 ∈ �} (9.1)

= {G66−1 | 6 ∈ �}
= {G | 6 ∈ �}
= {G}.

Each element of � is in a conjugacy class of its own.

9.1.1 Conjugacy classes of Yn

Theorem 9.1 The conjugacy classes of (= are exactly the permutations with a given
cycle structure.

Proof Corollary 3.2 implies that conjugating an element of (= does not change the
cycle structure. Theorem 3.11 shows that two elements in (= that have the same
cycle structure are conjugate to one another (the theorem even gives a prescription
for finding an element that conjugates one into the other). Therefore, elements in (=
are conjugate if and only if they have the same cycle structure. �

Example 9.3 The conjugacy classes of (4 and the cardinality of those conjugacy
classes are listed in Table 9.1.

Table 9.1: Conjugacy classes of (4.

Representative Element Cardinality
4 1
(••) 4·3

2 = 6
(• • •) 4·3·2

3 = 8
(••) (••) ( 4·3

2
2·1
2 )

1
2! = 3

(• • ••) 4·3·2·1
4 = 6

total = 24

There are five (distinct) conjugacy classes in (4. Note that

1 + 6 + 8 + 3 + 6 = 24 = |(4 |, (9.2)

as a partition of (4 should satisfy.

9.1.2 Conjugacy classes of Gn

�= is different from (=. Some U1 and U2 in �= are not conjugate even if they have the
same cycle structure. This is because it could be that 6U16

−1 = U2 only has solutions
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where 6 an odd permutation, so 6 ∉ �=. Therefore, elements that used to form a
single conjugacy class in (= could split into separate conjugacy classes in �=.

Example 9.4 The conjugacy classes of �4 are relatively straightforward to evaluate
by brute-force. The result is given in Table 9.2.

Table 9.2: Conjugacy classes of �4.

Representative Element Conjugacy Class Cardinality
4 {4} 1
(1 2 3) {(1 2 3) , (1 4 2) , (1 3 4) , (2 4 3) } 4
(1 3 2) {(1 3 2) , (1 2 4) , (1 4 3) , (2 3 4) } 4
(••) (••) {(1 2) (3 4) , (1 3) (2 4) , (1 4) (2 3) } 3

total = 12

For example, (1 2 3) and (1 3 2) are not conjugate. Suppose there were a 6 ∈ �4
such that 6(1 2 3)6−1 = (1 3 2). This requires

(6(1) 6(2) 6(3)) = (1 3 2) ⇒ 6 = (2 3) (9.3)
= (3 2 1) ⇒ 6 = (1 3) (9.4)
= (2 1 3) ⇒ 6 = (1 2). (9.5)

To explain the arrows⇒, what we mean is that once 6(1) is chosen, then 6(2) and
6(3) are determined.

• If 6(1) = 1, then 6(2) = 3 and 6(3) = 2. That is, 6 = (2 3).
• If 6(1) = 3, then 6(2) = 2 and 6(3) = 1. That is, 6 = (1 3).
• If 6(1) = 2, then 6(2) = 1 and 6(3) = 3. That is, 6 = (1 2).

However, all of these solutions are transpositions. Therefore, when we go from (4 to
�4, none of these solutions "carry over." Thus, as claimed, even though (1 2 3) and
(1 3 2) were conjugate in (4 (with the solutions found above) they are not conjugate
in �4.

Fact: The conjugacy class (• • •) does not split in �= for = ≥ 5. In fact, :-cycles
with 1 ≤ : ≤ (= − 2) do not split in �=. One only has to worry about (= − 2)-
cycles splitting in �= (for = even, since if = is odd then the (= − 1)-cycles are odd
permutations and therefore are not in �=). Let’s prove this.

Proposition 9.2 Any :-cycle in �= is conjugate to any other :-cycle in �= for
1 ≤ : ≤ (= − 2) (and : odd, of course).

Proof Let 1 ≤ : ≤ (= − 2) with : odd. Let U, V ∈ �= be arbitrary :-cycles. Then U
and V are conjugate in (=. That is, there exists a 6 ∈ (= such that 6U6−1 = V. There
are two cases to consider.
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i) If 6 ∈ �=, then U and V are conjugate in �=.
ii) If 6 is an odd permutation, thenwe can create an even permutation that conjugates

U to V. This is because there exist two integers that do not appear in U (since
1 ≤ : ≤ (= − 2)). Use those two integers to create a transposition and call it C.
Then 6C is an even permutation so 6C ∈ �=. Also, we have

(6C)U(6C)−1 = 6CUC−16−1 = 6UCC−16−1 = 6U6−1 = V, (9.6)

where we have used CU = UC since U and C are disjoint. �

9.2 Centers

Definition 9.3 Let � be a group. The center of �, denoted / (�), is the subset
/ (�) = {G ∈ � | GH = HG for ∀H ∈ �}.

Proposition 9.3 / (�) is a subgroup.

Proof 4 ∈ / (�) so / (�) is nonempty. Let G, H ∈ / (�). Then for any 6 ∈ �

6GH−1 = G6H−1 since G ∈ / (�) (9.7)

= G(H6−1)−1

= G(6−1H)−1 since H ∈ / (�)
= GH−16.

Therefore, GH−1 ∈ / (�). By Theorem 1.1, / (�) is a subgroup of �. �

Theorem 9.2 / (�) is the union of the conjugacy classes of� which have cardinality
1.

Proof Let G ∈ / (�). This means that 6G = G6 for any 6 ∈ �. In other words,
6G6−1 = G for any 6 ∈ �, so [G] = {G}. Likewise, if [G] = {G} then 6G6−1 = G for
any 6 ∈ �. This then means 6G = G6 for any 6 ∈ �, so G ∈ / (�). �

Proposition 9.4 / (�) = � if and only if � is abelian.

Proof ⇒ Suppose / (�) = �. This means that GH = HG for ∀G, H ∈ �. This is,
however, precisely what it means for � to be abelian.
⇐ Since � is abelian [G] = {6G6−1 | 6 ∈ �} = {G66−1 | 6 ∈ �} = {G} for any
G ∈ �. Thus, every element in � forms a conjugacy class of size 1. Apply Theorem
9.2 to reach the necessary conclusion. �

Example 9.5 / ((2) = (2 since (2 = {4, (1 2)} is abelian.

Example 9.6 / ((=) = {4} since the conjugacy classes of (= are those of a given
cycle structure. The only cycle structure that has only 1 element with that cycle
structure is the cycle structure with = 1-cycles. That is, only the identity element.
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Theorem 9.2 is useful because it means that to find / (�), one does not necessarily
need to check all the possible products of two elements in a group. Instead, one can
work out the conjugacy classes and check which ones have only have one element.
See Problem 9.2 for practice.

Problems

9.1 Show that �6 has exactly one conjugacy class of elements of order two. (Hint:
What are the possible cycle structures for elements in (6? What about �6?)

9.2 a) Work out the conjugacy classes of �= for = even and = odd.
b) Apply Theorem 9.2 to find / (�=) for = even and = odd.

9.3 Find the center of the following groups:

a) $= and ($=.
b) *= and (*=.

(Hint: The idea is to let � be an arbitrary element of the group and ask what are
the constraints on � so that � is in the center of the group. To do this, use clever
choices of matrices % and enforce �% = %� and compare the two sides to see what
the constraints on the entries of � are. The constraints will end up being strict and
will force � to be relatively simple.)

9.4 a) Prove that the 3-cycles in �5 form a single conjugacy class. That is, the
3-cycles which form a single conjugacy class in (5 do not split when viewed as
elements of �5.

b) The 5-cycles do not form a single conjugacy class. Find two 5-cycles in �5
which are not conjugacy in �5 (with proof, of course). We see that the 5-cycles,
which form a single conjugacy class in (5 do split when the 5-cycles are viewed
as elements in �5.

9.5 Let @ = 0 + 18 + 2 9 + 3: and @′ = 0′ + 1′ + 2′ 9 + 3 ′: be quaternions. Define

@ + @′ = (0 + 0′) + (1 + 1′)8 + (2 + 2′) 9 + (3 + 3 ′):,
@ · @′ = (00′ − 11′ − 22′ − 33 ′) + (01′ + 10′ + 23 ′ − 32′)8

+ (02′ − 13 ′ + 20′ + 31′) 9 + (03 ′ + 12′ − 21′ + 30′):.

Prove that H forms an abelian group under addition and that H − {0} is a group
(though not an abelian group) under multiplication. Show that the correspondence

0 + 18 + 2 9 + 3: ↔ (0, 1, 2, 3)

is an isomorphism from the additive group H to R4.
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9.6 The conjugate of a quaternion @ = 0 + 18 + 2 9 + 3: is defined to be @∗ =
0 − 18 − 2 9 − 3: , and the length of @ is the square root of @ · @∗. In other words,
the length is

√
02 + 12 + 22 + 32. Show that the quaternions of unit length form a

subgroup of H− {0}. We shall denote this group by (3 because it corresponds to the
unit sphere if we identify H with R4 (see Problem 9.5).

9.7 Prove that the correspondence

0 + 18 + 2 9 + 3: ↔
[
0 + 81 , 2 + 83
−2 + 83 , 0 − 81

]
,

where 8 =
√
−1 ∈ C on the right hand, defines an isomorphism between (3 and (*2.

(Hint: To prove surjectivity, make use of Problem 12.1.)

9.8 Show that any nonzero quaternion has a multiplicative inverse.

9.9 Write out the elements of (*2 which correspond to the subgroup & of (3. Find
a subgroup of (3 which is isomorphic to �.

9.10 An element of H of the form 18 + 2 9 + 3: is called a pure quaternion. Show that

@ · (18 + 2 9 + 3:) · @−1

is a pure quaternion for every @ ∈ H − {0}. (Hint: @ · (18 + 2 9 + 3:) · @−1 =

� + �8 + � 9 + �: for some �, �, �, �. You only need to show that � is 0. You can
work in matrix notation as in Problem 9.7, if preferred.)

9.11 Given x = (G1, G2, G3) in R3, let @(x) denote the quaternion G18 + G2 9 + G3: . If
x, y ∈ R3 prove that

@(x × y) = x · y + @(x) · @(y).

Definition: A division ring is a ring with 1 in which every nonzero element has
a multiplicative inverse, but in which multiplication need not be commutative. The
quaternions H are a leading example of a division ring.
Background: A topological group is a group� that is also a topological space (e.g., a
metric space); we require that themultiplication function�×� → � by (G, H) ↦→ GH

and the inversion function� → � by G ↦→ G−1 be continuous functions. An example
of a topological group is �!= (R), which inherits its topology from viewing the =2

matrix elements as elements of R=2 with the usual metric.
The sphere (= can only be a topological group for special =:

• (0 = {±1}, the sphere of dimension 0 in R.
• (1, the unit circle � in C, is isomorphic to ($2.
• (3, the unit quaternions, is isomorphic to (*2.
• (7, the unit sphere in an 8-dimensional space call the octonions. The octonions
are a nonassociative ring.
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It is proved in topology that, among spheres, only these four can be topological
groups.

9.12 For paragraphs marker •, you do not have to write anything, but you may use
them in later parts.

a) Let | |@ | | =
√
@ · @∗ be the length of a quaternion. Show that the length is

multiplicative: | |@A | | = | |@ | | · | |A | |.
b) Show that @ · (18 + 2 9 + 3:) · @−1 for @ ∈ H − {0} has the same length as
18 + 2 9 + 3: .

c) Use b) to construct a nontrivial homomorphism q : (*2 → $3. That is,
conjugation preserves the length of pure quaternions.

d) Let [0, 1] be the closed interval from 0 to 1 in R. A path in a space - is a
continuous function ? : [0, 1] → - . The endpoints of the path are G0 = ?(0)
and G1 = ?(1).We say - is path-connected if any two points of - can be joined
by a path in - . For = ≥ 1, argue that the sphere (= is path-connected. (You do
not need to be fully rigorous on this part.)

• The determinant is a continuous function on a matrix group. This is because
polynomials are continuous, and dividing two continuous function is con-
tinuous whenever the denominator is not zero. For complex polynomials
in both I and I∗, the real and imaginary parts are real polynomials, hence
continuous.

e) We know $3 is the disjoint union ($3 ∪ � · ($3 where � is any � ∈ $3 with
det � = −1. Show that no continuous path in $3 can join a point in ($3 to
a point in � · ($3. (Hint: What would the determinant do on such a path? In
particular, in the intermediate of such a path?) We say ($3 and � · ($3 are in
different path-connected components.

• The image of a path-connected space - under a continuous function 5 :
- → . is path-connected. Proof: Let H0, H1 be in the image. Write 5 (G0) =
H0 and 5 (G1) = H1. Let ? be a continuous path from G0 to G1. The composition
of continuous function is continuous. Thus, 5 ◦ ? is a continuous path from
H0 to H1.

f) Conclude that the homomorphism q really goes (*2 → ($3.

• q is surjective. One can prove this with more topology. Or, since = = 2 is
small, one may be able to play with (*2 and prove it directly.

g) Show that the solution set of q(@) = �3×3 contains exactly two points, the
quaternions ±1.

h) Show that for any � ∈ ($3, the solution set of q(@) = � contains exactly two
points.

• Parts g) and h) have shown that (*2 is a double cover of ($3. Around any
point q(@) of ($3, take a small open ball *; there are two disjoint small
open balls *1,*2 around @,−@, respectively, in (*2, and k send each * 9
bĳectively onto*.
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• What is the dimension of these balls? ($3 is a 3-dimensional space: it has
three degrees of freedom. To see this, put the unit sphere (2 around the
origin in R3. Choose any unit vector v pointing from the origin to (2- that’s
two dimensions’ worth of choice, since (2 is a 2-dimensional surface. Let
v span the axis of a rotation. Choose an angle \ between 0 and 2c- that’s a
third dimension’s worth of choice. Rotate around the chosen axis by \. Since
we will prove that every nontrivial element of ($3 is a rotation around an
axis, we have accounted for all the dimensions.

• (*2 is also 3-dimensional, because it is a double cover of ($3; the balls*1
and *2 are 3-dimensional, like *. The group *2 is 4-dimensional, because

it is (*2 times one more dimension, the choice of \ in
[
48 \ 0
0 1

]
.

• Even more interesting, the map *1 → * has the opposite orientation from
*2 → *. Any curve @(C) through the center of *1 corresponds to a curve
−@(C) in the opposite direction through the center of*2. Since the dimension
is three, the total change of orientation is (−1)3 = −1. ($3 is a nonorientable
three-dimensional space, just as the Mobius strip is a nonorientable two-
dimensional surface. (*2 = (

3 is orientable, but the double covering map
q wraps it up in a nonorientable way. ($3 is also called the real projective
space of dimension 3. This is more information online about these topics.



Chapter 10
Quotient Groups

Abstract In chapter 4, we saw how to make groups by "multiplying" groups. In this
chapter we will explore how to create groups by "dividing" a group by a (normal)
subgroup.

10.1 Exploring a Hunch

Let us review some material. Let � be a subgroup of �. The set

6� = {6ℎ | ℎ ∈ �} ⊆ � (10.1)

is called a left coset of � in �. The set

�6 = {ℎ6 | ℎ ∈ �} ⊆ � (10.2)

is called a right coset of � in �.

Definition 10.1 Let � be a group and let � be a subgroup of �. We denote the set
of all (distinct) left cosets of � in � by �/�. We denote the set of all (distinct) right
cosets of � in � by �\�.

The number of elements in �/� is [� : �]. Note that �/� is a set of elements,
those elements themselves being sets (namely, the left cosets of � in �).

Important Note: The notation �/� is used in two ways. It denotes the set of all
(distinct) left cosets of � in �. These left cosets may also have the structure of a
group, as we shall see now. When they have the structure of a group, we also denote
them as �/� and call it the quotient group of � by �. That is, when you see �/�
you can always think of it as the set of all (distinct) left cosets of � in �, but don’t
always assume that it is a quotient group unless � is, as we will now see, a normal
subgroup of �.

Let � be a (finite or infinite) group and let � be a subgroup of �. Recall that
a group � is a set with a binary operation � : � × � → � which satisfies some
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98 10 Quotient Groups

conditions (sometimes called the group axioms), as mentioned in Definition 1.4. We
have seen that �/� is also a set, albeit a set whose elements are also sets. A natural
question that arises is this: is there a binary operation on the set�/�, perhaps related
to the binary operation of � in some way, which gives the set �/� the structure of
a group? That is, suppose that G � � ∈ �/� and H � � ∈ �/�. Is there a binary
operation ★ : (�/�) × (�/�) → �/� which satisfies the group axioms? If so, is
it related to � : � × � → �? One guess is this: trying composing the two sets. By
composing, we mean to define

- �. = {G � H |G ∈ -, H ∈ . } (10.3)

for any sets - ⊆ �,. ⊆ �.We hope that the following holds:

(G�) � (H�) = (G � H) � �, (10.4)

for all G�, H� ∈ �/�. If it does, then define ★ : (�/�) × (�/�) → �/� as

(G � �) ★ (H � �) = (G � H) � � (10.5)

for every G � �, H � � ∈ �/�. The binary operation ★ : (�/�) × (�/�) → �/�
would be a binary operation. It would be associative since � is associative. The coset
4 �� = � would be the identity element of �/� under the binary operation★ since
(4 � �) ★ (G � �) = (G � �) ★ (4 � �) = (4 � G) � � = (G � 4) � � = G � � for any
G ∈ �. Also, every G �� would have an inverse since one could pick H ∈ � such that
G � H = H � G = 4 which would then imply (G � �) ★ (H � �) = (H � �) ★ (G � �) =
(G � H) � � = (H � G) � � = 4 � � = �.

Okay, maybe there are too many � and ★ floating around. Let us consider multi-
plicative notation. In multiplicative notation, this looks like

(G�) (H�) = (GH)� (10.6)

for any G, H ∈ �. We hope/guess that (G�) (H�) = (GH)� for any G, H ∈ �. If so,
then 4� is the identity element and G−1� is the inverse of G�. In additive notation
this looks like

(G + �) + (H + �) = (G + H) + � (10.7)

for any G, H ∈ �. We hope/guess that (G + �) + (H + �) = (G + H) + �. If so, then
0 + � is the identity element and −G + � is the inverse of G + �.

Example 10.1 Let � = �=. Let � = 〈A〉. Then 4� = {4, A, A2, · · · , A=−1} and
B� = {B, BA, BA2, · · · , BA=−1} = {B, AB, A2B, · · · , A=−1B} (as sets, not as ordered sets)
partition �=. Therefore, �/� = {4�, B�}. We see that (verify this!)

(4�) (4�) = (44)� = 4�, (B�) (4�) = (B4)� = B�, (10.8)
(4�) (B�) = (4B)� = B�, (B�) (B�) = (BB)� = 4�.
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Thus, the set of left cosets �/� does have the structure of a group. In fact, it is
isomorphic to Z2.

Example 10.2 Let � = (Z, +, 0) and � = 4Z. Then

�/� = Z/4Z = {4Z, 1 + 4Z, 2 + 4Z, 3 + 4Z}. (10.9)

If these cosets are combined via

(G + 4Z) + (H + 4Z) = (G + H) + 4Z, (10.10)

then�/� forms a group. More generally, if = is a positive integer then Z/=Z consists
on = distinct cosets

0 + =Z, 1 + =Z, · · · , (= − 1) + =Z (10.11)

which form a group. In fact, Z/=Z � Z=.

So far, so good. Was our intuition/guess on how to define★ : (�/�) × (�/�) →
�/� correct? Are things that straightforward? Actually, not quite.

Example 10.3 Let � = (3 and � = 〈(1 2)〉 = {4, (1 2)}. Then �/� consists of

4� = {4, (1 2)}, (10.12)
(1 3)� = {(1 3), (1 2 3)}, (10.13)
(2 3)� = {(2 3), (1 3 2)}. (10.14)

Note that

(1 2)� · (2 3)� = {4, (1 2)}{(2 3), (1 3 2)} (10.15)
= {(2 3), (1 3 2), (1 2) (2 3), (1 2) (1 3 2)}
= {(2 3), (1 3 2), (2 3 1), (1 3)}

while (1 2) (2 3) = (1 2 3) and

(1 2 3)� = (1 2 3){4, (1 2)} (10.16)
= {(1 2 3), (1 2 3) (1 2)}
= {(1 2 3), (1 3)}.

Thus, we see that (1 2)� · (2 3)� ≠ ((1 2) (2 3))�, so�/� does not have the group
structure that we were hoping for. In fact, ((1 2)� (2 3))� has cardinality 4 so even
before calculating (1 2 3)� we know that the two cannot be equal as (1 2)� (2 3)�
has the wrong size so it can’t be a left coset of � in (3.

It seems that the set of left cosets �/� sometimes has the group structure we
would like, but not always. Our goal is to understand the reason behind this and see
what we can salvage from our intuition into theorems.



100 10 Quotient Groups

10.2 Normal Subgroups and Quotient Groups

Proposition 10.1 Let � be a (finite or infinite) group and let � be a subgroup of �.
If 6� = �6 for any 6 ∈ � then

(G�) (H�) = (GH)�

for any G, H ∈ �.
Proof We prove this by showing that (G�) (H�) ⊆ (GH)� and (GH)� ⊆ (G�) (H�).

• (GH)� ⊆ (G�) (H�) follows since (GH)ℎ = (G4) (Hℎ) ∈ (G�) (H�) for any
ℎ ∈ �.

• To show that (G�) (H�) ⊆ (GH)�, consider I ∈ (G�) (H�) be arbitrary. Then
I = (Gℎ1) (Hℎ2) for some ℎ1, ℎ2 ∈ �. Then

I = G(ℎ1H)ℎ2 = G(Hℎ3)ℎ2 = (GH) (ℎ3ℎ2) (10.17)

for some ℎ3 ∈ �. This is because, by assumption, 6� = �6 for any 6 ∈ �.
Therefore, ℎ1H ∈ �H implies ℎ1H ∈ H�, so ℎ1H = Hℎ3 for some ℎ3 ∈ �.
However, since� is a subgroup, ℎ3ℎ2 ∈ �. Therefore, I = (GH) (ℎ3ℎ2) ∈ (GH)�.
Since I ∈ (G�) (H�) was arbitrary, we conclude that (G�) (H�) ⊆ (GH)�. Thus,
(G�) (H�) = (GH)�. �

Definition 10.2 Let� ≤ �. We say� is a normal subgroup of�, or a self-conjugate
subgroup of �, if 6�6−1 ⊆ � for all 6 ∈ �. For finite groups, we can think of this
as 6�6−1 = � for all 6 ∈ � since conjugation is bĳective. If � ≤ � is a normal
subgroup, we denote this by writing � E �.

Equivalently, � is a normal subgroup of � if 6� = �6 for all 6 ∈ �.
Proposition 10.2 Let � ≤ �. Then � E � if and only if G� = �G for all G ∈ �.
Proof ⇒ Suppose � E �. Then G�G−1 = � for all G ∈ �. In other words, G� = �G

for all G ∈ � (since right multiplication is bĳective).
⇐ Suppose G� = �G for all G ∈ �. This means that Gℎ for any ℎ ∈ � can be written
as Gℎ = ℎ̃G for some ℎ̃ ∈ � (where the ℎ̃ depends on ℎ). That is, for any G ∈ � and
any ℎ ∈ �, there exists a ℎ̃ ∈ � such that GℎG−1 = ℎ̃. Thus, G�G−1 ⊆ �. �

Note: When � E �, it doesn’t mean that 6ℎ6−1 = ℎ for ∀6 ∈ � and ∀ℎ ∈ �. It
just means that 6ℎ6−1 = ℎ̃ ∈ �, where ℎ̃ may or may not be ℎ.

We now have terminology to describe an observation.

Proposition 10.3 Let � be a group and let � be a normal subgroup of �. Then the
set of left cosets of � in �, denoted �/�, form a group where the group binary
operation is defined as

(G�) (H�) = (GH)�

for any G�, H� ∈ �/�.
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Proof This follows from our discussions above. If � E �, then 6� = �6 for
any 6 ∈ �. By Proposition 10.1, the composition is associative. Also, G−1� is the
inverse of G� and 4� is the identity element. Therefore, �/� has the structure of
a group. If [� : �] is finite, then |�/� | = [� : �] . If � is a finite group, then
|�/� | = [� : �] = |� |/|� |. �

Definition 10.3 Let � be a normal subgroup of�. Then the set�/� with the binary
operation (G�) (H�) = (GH)� for any G�, H� ∈ �/� is called a quotient group or
factor group.

Normal subgroups and quotient groups are the big ideas of this chapter. The
takeaway from this chapter should be that normal subgroups have a nice feature
which lets one "divide" out or "factor" a group into smaller pieces (the pieces being
the left cosets comprising�/�) and those pieces themselves have a group structure.
See Figure 10.1 for some intuition.

Fig. 10.1: If # E �, then the left cosets �/# also behave like a group with the
binary operation defined as (G�) (H�) = (GH)� for all G�, H� ∈ �/�.

Let us consider some examples of normal subgroups and list some ways to find
normal subgroups of a group.

Example 10.4 Let (!= (R) be the group of = × = matrices with determinant 1. Let
�!= (R) be the group of = × = invertible matrices. Let � ∈ (!= (R) be arbitrary.
Let � ∈ �!= (R) be arbitrary. Then det(���−1) = det(�−1��) = det(�) = 1, so
���−1 ∈ (!= (R). Therefore, (!= (R) E �!= (R).

Proposition 10.4 � E � if and only if � is a union of conjugacy classes of �.

Proof ⇒ Suppose that � is a normal subgroup of �. Let ℎ ∈ � be arbitrary. Then
6ℎ6−1 ∈ � for any 6 ∈ �. Equivalently, this means [ℎ] ⊆ � where [ℎ] ≡ {6ℎ6−1 |
6 ∈ �} denotes the conjugacy class of ℎ. Therefore,

� =
⋃
ℎ∈�
[ℎ] . (10.18)
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Therefore, � is a union of conjugacy classes. Note, however, that all the conjugacy
classes in the above equation are not necessarily distinct. That doesn’t matter. We
didn’t seek the most efficient expression of � E � as a union of conjugacy classes
of �.We just wanted to show that it can be done for any � E �.
⇐ Suppose that � is a union of conjugacy classes of �. Then 6ℎ6−1 ∈ [ℎ] ⊆ �
for any ℎ ∈ � and any 6 ∈ �. That is, 6ℎ6−1 ∈ � for any ℎ ∈ � and any 6 ∈ �.
Therefore, � E �. �

Note: Conjugacy classes are usually not closed under multiplication.

Example 10.5 In (= for = ≥ 4, (• • ••) is a conjugacy class. However, (• • ••)2 =
(••)(••). For example, (1 2 3 4)2 = (1 3) (2 4), which belongs to a different
conjugacy class than (1 2 3 4).

Proposition 10.5 Let � be an abelian group. Then every subgroup � ≤ � is a
normal subgroup � E �.

Proof This is because 6ℎ6−1 = 66−1ℎ = ℎ ∈ � for any ℎ ∈ � and any 6 ∈ �, so
clearly 6�6−1 = �. Or, to connect the discussion to the previous proposition, every
conjugacy class of an abelian group has only one element so any subgroup � ≤ �
is clearly a union of conjugacy classes of �. �

A good question to ask is if the converse holds. That is, if every subgroup of a
group� is normal, is� an abelian group? The answer is no. Consider the quaternion
group &8. Verify that all the subgroups of &8 are normal. However, &8 is a non-
abelian group.

Proposition 10.6 Let � be an abelian group. Then the center of � (labeled / (�))
is a normal subgroup of �.

Proof Proposition 9.3 shows that / (�) is a subgroup. It is a normal subgroup
because 6I6−1 = I ∈ / (�) for any I ∈ / (�) and any 6 ∈ �, so clearly 6/ (�)6−1 =
/ (�). �

Example 10.6 Consider &8 = {±1,±8,± 9 ,±:}. Then / (&8) = {±1}. &8// (&8)
has four cosets: 4/ (&8) = {±1}, 8/ (&8) = {±8}, 9 / (&8) = {± 9}, :/ (&8) = {±:}.
Therefore, &8// (&8) is isomorphic to either Z4 or Z2 × Z2. Notice that 82 = −1, so
that (8/ (&8))2 = (−1)/ (&8) = / (&8). This means that &8// (&8) has an element
of order 2, so &8// (&8) � Z4. Therefore, &8// (&8) � Z2 × Z2.

Theorem 10.1 Let � be a subgroup of � with index 2. Then � E � (actually,
� ⊳ �).

Proof 4� is a left coset in �/�. Note that for any G ∈ � we have G� = �G.
Consider any G ∉ �. Then � = 4� ∪ G�. But � = �4 ∪ �G = 4� ∪ �G also.
Therefore, G� = �G for any G ∉ �. Thus, G� = �G for all G ∈ �. �
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Note: It is not guaranteed that every group � has a subgroup � such that [� :
�] = 2. All the theorem says is that if there exists an � ≤ � such that [� : �] = 2
then � E �. For example, if � = Z3 then the only subgroups are {4} or Z3, neither
of which have index 2.

Example 10.7 Let� = �=. Let� = 〈A〉. Then�/� = {4�, B�}. Note that B� ·B� =

B2� = 4� so�/� is a cyclic group of order 2. In other words,�/� = �=/〈A〉 � Z2.
Indeed, 〈A〉 E �= for any = ≥ 3. This is because

(A1)A0 (A−1) = A0 ∈ 〈A〉 (10.19)

(A1B)A0 (A1B)−1 = (A1B)A0BA−1 = A1A−0B2A−1 = A−0 ∈ 〈A〉 (10.20)

for any 0, 1 ∈ Z.

Example 10.8 We collect below some normal subgroups of groups with index 2.

i) �= E (= since |�= | = |(= |/2⇒ [(= : �=] = 2.
ii) 〈A〉 E �= since [�= : 〈A〉] = 2.
iii) ($= E $= since $= = ($= ∪ � · ($= where � ∈ $= with det� = −1 and,

hence, [$= : ($=] = 2.

There is a generalization of the above theorem.

Theorem 10.2 Let � be a finite group and let ? be the smallest prime divisor of |� |.
If � ≤ � such that [� : �] = ?, then � E �.

Proof Problem 13.9 asks the reader to provide the proof. �

Thus, we see that Theorem 10.1 is a special case of Theorem 10.2 when the
smallest prime divisor ? of |� | happens to be 2. Let’s use this to prove what we
already proved in Proposition 7.6: �4 has no subgroup of order 6.

Proposition 10.7 �4 has no subgroup of order 6.

Proof Suppose that � ≤ �4 is a subgroup with order 6, |� | = 6. Then [�4 : �] = 2,
so that � ⊳ �4. Thus, the quotient group �4/� is isomorphic to Z2. Therefore,
U2� = (U�)2 = 4�. By Theorem 7.1, this means that U2 ∈ � for any U ∈ �4.
However, working out U2 for every U ∈ �4 leads to 9 distinct elements, all of which
must belong to �, a subgroup assumed to be of order 6. Therefore, �4 has no
subgroup of order 6.

To see that we get 9 distinct elements in this process, you can explicitly calculate
U2 for every U ∈ �4. A slicker way is to note that �4 consists of the identity,
( 4·32!

2·1
2! )

1
2! = 3 elements with cycle structure (••)(••), and 4·3·2

3 = 8 elements with
cycle structure structure (• • •). Note that U2 = 4 for the identity element and for
the three terms that have cycle structure (••)(••). Each of the elements with cycle
structure (• • •) square to another element with cycle structure (• • •). Thus, U2

with U running through the eight 3-cycles just gives back the eight 3-cycles. Thus,
we have 8 + 1 = 9 distinct results when calculating U2 for U ∈ �4. �
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Theorem 10.3 Let � be a group. Let � ≤ �,  E �. Then � ≤ �.

Proof � ≤ �. Note that � is nonempty since 4 ∈ � and 4 ∈  , so 4 ∈ � . Let
G1, G2 ∈ � . Then G1 = ℎ1:1 and G2 = ℎ2:2 for some ℎ1, ℎ2 ∈ � and :1, :2 ∈  .
Then

G1G
−1
2 = (ℎ1:1) (ℎ2:2)−1 = ℎ1:1:

−1
2 ℎ−1

2 = (ℎ1ℎ
−1
2 ) (ℎ2:1:

−1
2 ℎ−1

2 ) ∈ � . (10.21)

The last part follows because � is a subgroup so ℎ1ℎ
−1
2 ∈ �,  is a subgroup so

:1:
−1
2 ∈  and so, since  is a normal subgroup, ℎ2:1:

−1
2 ℎ−1

2 ∈  . By Theorem
1.1, � ≤ �. �

In Problem 10.6, you will show that � ≤ � if � E � and  ≤ �. Therefore,
� ≤ � as long as one of them is a normal subgroup of �. In the same problem,
you will show that if � E  and  E � then � is not just a subgroup of �, but
rather a normal subgroup � E �. If � and  are subgroups of � but neither is a
normal subgroup of �, then � is not necessarily a subgroup of �. See part a) of
Problem 10.6.

10.3 Simple groups

Definition 10.4 A (finite or infinite) group � is called simple if |� | > 1 (that is, �
is not the trivial group � = {4}) and the only normal subgroups of � are � and {4}.

The reader is already aware of some groups that are simple.

Proposition 10.8 Let � be a finite group such that |� | is prime. Then � is a simple
group.

Proof By Lagrange’s theorem, any group with |� | = ? for some prime number ? is
cyclic (see Theorem 7.4). This means that if |� | is prime then the only subgroups of
� are {4} or � so that, in particular, the only normal subgroups are {4} and �. That
is, � is simple. �

The rest of the text won’t make explicit mention of simple groups, but we mention
the terminology and idea to make the reader aware of their existence. In the theory of
groups, simple groups play an important role. Simple groups, by definition, cannot
be "broken up" into smaller pieces like {4} ≠ # ⊳ �. Note that for simple groups
# E � implies that �/# is either isomorphic to the trivial group or to �. In some
sense, simple groups in group theory are like prime numbers in the arithmetic of
Z. The analogy is made more precise by a "unique factorization theorem" for finite
groups.

Definition 10.5 Let � be a group. A sequence of subgroups

{4} = #0 < #1 < · · · < #:−1 < #: = �
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is called a composition series if #8 ⊳ #8+1 and #8+1/#8 is a simple group for 0 ≤ 8 ≤
: − 1. The quotient groups #8+1/#8 for 0 ≤ 8 ≤ : − 1 are called composition factors
of �.

Remark: In the above, we do not assume #8 E � for all 8. We only require that
#8 E #8+1. See Problem 10.2, where you are asked to show that the property of
being a normal subgroup is not transitive.

Example 10.9 The following are composition series for the cyclic group Z6:

{4} ⊳ Z3 ⊳ Z6, (10.22)
{4} ⊳ Z2 ⊳ Z6. (10.23)

Example 10.10 The following are composition series for �4:

{4} ⊳ 〈B〉 ⊳ 〈B, A2〉 ⊳ �4, (10.24)

{4} ⊳ 〈A2〉 ⊳ 〈A〉 ⊳ �4. (10.25)

Theorem 10.4 (Jordan-Hölder) Let � be a finite group with � ≠ {4}. Then
• � has a composition series.
• The composition factors of the composition series are unique. More precisely, if

{4} = #0 < #1 < · · · < #0 = �

and

{4} = "0 < "1 < · · · < "1 = �

are composition series for �, then 0 = 1 and there is some permutation f of
{1, 2, . . . , 0} such that

"f (8)/"f (8)−1 � #8/#8−1, 1 ≤ 8 ≤ 0.

Proof We will not explicitly use this theorem throughout the text, so we do not
provide a proof. (Proof left to reader, if interested.) �

Before finishing our short discussion on simple groups, we prove that some more
of the groups that the reader is familiar with are simple groups.

Theorem 10.5 The alternating group �= is simple for = ≥ 5.

Proof There are many ways to prove this. We will use the fact that �= is generated
by 3-cycles (see Theorem 3.15), and then show that a normal subgroup of �= must
contain one 3-cycle and, hence, must contain all the 3-cycles, which would imply
that the normal subgroup is �= itself. This is because all 3-cycles are conjugate in
�= (see Proposition 9.2) so if U = (• • •) is some 3-cycle is #, then letting 6 run
through all elements in �= means 6U6−1 ∈ # (since # is a normal subgroup), so all
the 3-cycles are in #.
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Let # be a nontrivial normal subgroup of �=. We must show that # contains a
3-cycle. Problem 10.7 asks you to fill in this part.

Thus, we see that if # E �= for = ≥ 5 then # is either {4} or �=. That is, �= is a
simple group for = ≥ 5. �

Note that �3 is an abelian simple group while �4 is not a simple group, since

{4, (1 2) (3 4), (1 3) (2 4), (1 4) (2 3)} ⊳ �4. (10.26)

�3 has three elements, so it is simple (see, for example, Proposition 10.8). �2 is
isomorphic to Z2 and it is easy to see that it is normal.

Problems

10.1 Let � be a group, and let � and � both be subgroups of �. Prove that �� is a
subgroup of � if and only if �� = ��.

10.2 Let � be a group. Let � E � and let � E �. Then � ≤ �. Give an example
where � 5 �. This shows that the property of being a normal subgroup is not
transitive.

10.3 Let � be a group. Let � E � and let � E �. Suppose � ∩ � = {4}. Show that
ℎ 9 = 9 ℎ for any ℎ ∈ � and 9 ∈ �.

10.4 Suppose that� contains a normal subgroup # E � such that # � Z2 and�/#
is cyclic of infinite order. Show that � is isomorphic to Z × Z2.

10.5 Suppose that � contains a normal subgroup # E � which is cyclic, of infinite
order, and �/# is isomorphic to Z2. Show that � is isomorphic to one of the
following: Z, Z × Z2, �∞.

10.6 Let � and  be subgroups of �. Define � = {ℎ: | ℎ ∈ �, : ∈  }.
a) Give an example where � is not a subgroup.
b) If � is a normal subgroup of �, prove that � is a subgroup of �.
c) If both � and  are normal in �, prove that � is normal in �.

10.7 a) Find a proper normal subgroup of �4.
b) Consider �5.Work out the commutators

(1 2 3 4 5)−1 (3 4 5)−1 (1 2 3 4 5) (3 4 5),
(1 2) (3 4) (3 4 5)−1 (1 2) (3 4) (3 4 5).

c) Prove that the 3-cycles in �5 form a single conjugacy class. That is, prove that
the 3-cycles of (5 do not split into separate conjugacy classes when viewed as
elements of �5. Actually, prove that the 3-cycles form a single conjugacy class
in �= for = ≥ 5.
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d) Show that a nontrivial normal subgroup of �5 must contain a 3-cycle. Therefore,
the previous part implies that this nontrivial normal subgroup must contain all
the 3-cycles. Use Theorem 3.15 to conclude that this subgroup must be all of
�5. This proves that �5 is a simple group.

e) Fill in the steps to complete Theorem 10.5, proving that �= is a simple group
for all = ≥ 5.





Chapter 11
Group Actions, Orbits, and Stabilizers

Abstract Groups have a natural interpretation of acting on abstract objects. A con-
crete example is a group acting on an object in 3-D space.

11.1 Group Actions, Orbits, and Stabilizers

Definition 11.1 Let� be a group. Let - be a set. An action of� on - is a homomor-
phism q : � → (- , where (- is the symmetric group of - (the group of bĳective
mappings - → - with the binary operation of function composition). Some books
write q(6) (G), q(6, G), or 6 · G for actions. We will write q6 (G), at least for now.

Remark: Since q is a dummy variable in our notation which refers to the action
q : � → (- , 6 · G is a convenient notation because it saves time and space by not
requiring that one always say "let q : � → (- be an action of � on - ." However,
sometimes this causes confusion when learning about group actions for the first time
since 6 · G looks like 6G in multiplicative notation, even though that is not what
the notation means unless the action is left translation. That is, for left translation
q6 (G) = 6G so 6 · G = 6G. However, suppose the action is conjugation. Then 6 · G
means 6G6−1 so writing q6 (G) = 6G6−1 instead of 6 · G = 6G6−1 might cause less
confusion for a beginner.

Example 11.1 Let - be the set of the points in a tetrahedron. Then �4 acts on - in
an "obvious" way.

Example 11.2 Any group � acts on itself by left translation. Define q : � → (� by
q : 6 ↦→ !6, where !6 ∈ (� is defined by !6 (G) = 6G for all G ∈ - . This is what
was done in proving Cayley’s theorem. It is an action because

!6ℎ (G) = 6ℎG = 6!ℎ (G) = !6 ◦ !ℎ (G) (11.1)

for all G ∈ - so !6ℎ = !6 ◦ !ℎ . That is q6ℎ = q6 ◦ qℎ .

109
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Example 11.3 Every group � acts on itself by conjugation. That is, define q6 (G) =
6G6−1 for all G, 6 ∈ �. It is an action because conjugation is bĳective so q6 ∈ (�
and

q6ℎ (G) = (6ℎ)G(6ℎ)−1 = 6ℎGℎ−16−1 (11.2)

= 6qℎ (G)6−1 = q6 ◦ qℎ (G).

Definition 11.2 Let � act on a set - . Let G ∈ - . The orbit of x, denoted Orb(G), is
the set Orb(G) = {q6 (G) | 6 ∈ �}.

Definition 11.3 Let� act on a set - . Let G ∈ - . The stabilizer of x, denoted Stab(G),
is the set Stab(G) = {6 ∈ � | q6 (G) = G}.

Note: Orb(G) and Stab(G) consist of different types of objects if - ≠ � (if � is not
acting on itself). Orb(G) consists of (not necessarily all) elements which belong to
the set - (which could be points of some object in R3 or something like that) while
Stab(G) consists of (not necessarily all) elements which belong to the group �.

Proposition 11.1 Let � act on a set - . Let G ∈ - . Then Stab(G) is not just a subset
of �, but Stab(G) ≤ �.

Proof Stab(G) is nonempty since 4 ∈ Stab(G). Let 6, ℎ ∈ Stab(G). Then

qℎ (G) = G (11.3)

q−1
ℎ ◦ qℎ (G) = q

−1
ℎ (G) (11.4)

qℎ−1 ◦ qℎ (G) = qℎ−1 (G) (11.5)
q4 (G) = qℎ−1 (G) (11.6)

G = qℎ−1 (G). (11.7)

Thus, ℎ−1 ∈ Stab(G). Therefore,

q6ℎ−1 (G) = q6 ◦ qℎ−1 (G) = q6 (G) = G, (11.8)

so 6ℎ−1 ∈ Stab(G). By Theorem 1.1, Stab(G) ≤ �. �

Example 11.4 Consider �4 acting on the tetrahedron. If G is a vertex of the tetrahe-
dron, then Orb(G) = set of all vertices on the tetrahedron and Stab(G) � a rotation
group of order 3. A generic point G of the tetrahedron (so not the vertices or middle
of edges) has |Orb(G) | = 12 and Stab(G) = {4}.

Example 11.5 In the action of � on itself (so - = �) by left translation, there is
only one orbit, namely � itself. This is because for any G ∈ � and any H ∈ �, there
exists a 6, namely 6 = HG−1, such that q6 (G) = (HG−1)G = H. Also, Stab(G) = {4} for
∀G ∈ � since q6 (G) = G means 6G = G ⇒ 6 = 4. (� is a group so G−1 exists for all
G ∈ �.)

There is a special name for such actions.
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Definition 11.4 An action is transitive if it has only one orbit.

We have shown in Example 11.5 that the action of � on itself by left translation
is a transitive action.

Example 11.6 Let � act on itself by conjugation. Fix 6 ∈ � and define

q6 (G) = 6G6−1 (11.9)

for any G ∈ �. Then

Orb(G) = {q6 (G) | 6 ∈ �} = {6G6−1 | 6 ∈ �} = [G] (11.10)

is the conjugacy class of G in �. Also,

Stab(G) = {6 ∈ � | q6 (G) = G} = {6 ∈ � | 6G6−1 = G}. (11.11)

We see that Stab(G) is the centralizer of G in �.

Theorem 11.1 Elements in the same orbit have conjugate stabilizers. In particular,
if q6 (G) = H then 6 Stab(G)6−1 = Stab(H).

Proof Let � act on - . Let G, H ∈ - be in the same orbit. This means there ∃6 ∈ �
such that q6 (G) = H. Since q is a homomorphism, we have q6−1q6 (G) = q6−1 (H) ⇒
q66−1 (G) = q4 (G) = G = q6−1 (H). We want to show that 6 Stab(G)6−1 = Stab(H).

• Step 1: We want to show 6 Stab(G)6−1 ⊆ Stab(H). Pick any ℎ ∈ Stab(G) and
note that

q6ℎ6−1 (H) = q6ℎq6−1 (H) since q is a homomorphism (11.12)
= q6ℎ (G)
= q6qℎ (G) since q is a homomorphism
= q6 (G) since ℎ ∈ Stab(G)
= H.

Thus, 6ℎ6−1 ∈ Stab(H). But ℎ ∈ Stab(G) was arbitrary. Thus, 6 Stab(G)6−1 ⊆
Stab(H).

• Step 2: We want to show 6 Stab(G)6−1 ⊇ Stab(H). Pick any ℎ ∈ Stab(H) and
note that

q6−1ℎ6 (G) = q6−1ℎq6 (G) since q is a homomorphism (11.13)
= q6−1ℎ (H)
= q6−1qℎ (H) since q is a homomorphism
= q6−1 (H) since ℎ ∈ Stab(H)
= G.
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Thus, 6−1ℎ6 ∈ Stab(G). But ℎ ∈ Stab(H) was arbitrary. Thus, 6−1 Stab(H)6−1 ⊆
Stab(G). This is the same as Stab(H) ⊆ 6 Stab(G)6−1 (we can move 6 over to the
other side since conjugation is bĳective). �

11.2 Orbit-Stabilizer Theorem

Theorem 11.2 Orbit-Stabilizer Theorem - Let � act on - . Let G ∈ - . Then there
exists a bĳection 5 from �/Stab(G) → Orb(G) given by 5 : 6 Stab(G) ↦→ q6 (G).
(Note: Recall �/Stab(G) is always well-defined as a left coset space, but it is not
necessarily a group since it is not always the case that Stab(G) E �.)

Proof There are a few things to check.

• 5 is well-defined. By this we mean that it does not matter which representative
6 of a coset we choose when mapping 6 Stab(G) ↦→ q6 (G). Any other coset
representative 6̃ of 6 Stab(G) is equal to 6̃ = 6ℎ for some ℎ ∈ Stab(G). But

5 (6̃ Stab(G)) ↦→ q6̃ (G) = q6ℎ (G) = q6qℎ (G) = q6 (G) = 5 (6 Stab(G)).
(11.14)

• 5 is injective. Suppose 5 (61 Stab(G)) = 5 (62 Stab(G)). Then q61 (G) = q62 (G)
so q6−1

2 61
(G) = G and hence 6−1

2 61 ∈ Stab(G). But then

62 Stab(G) = 62 (6−1
2 61) Stab(G) = 61 Stab(G), (11.15)

where the first equality follows from 6−1
2 61 ∈ Stab(G).

• 5 is surjective. Let H ∈ Orb(G). Then there ∃6 ∈ � such that q6 (G) = H.
Therefore, 5 (6 Stab(G)) = q6 (G) = H.

Thus, 5 is indeed a bĳection between �/Stab(G) and Orb(G). �

Corollary 11.1 If � is finite, then for ∀G ∈ - , | Stab(G) | · |Orb(G) | = |� |.

Proof

|�/Stab(G) | = |� |/| Stab(G) | by Lagrange’s theorem (11.16)
= |Orb(G) | by Orbit-Stabilizer theorem.

�

With these theorems, we have enough machinery to prove some more theorems.
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11.2.1 Cauchy’s Theorem

Theorem 11.3 Cauchy’s Theorem - Let� be a finite group. Let ? be a prime number
that divides |� |. Then � contains an element of order ?.

Proof Let - be the set of all ?-tuples (61, · · · , 6?) with 61, · · · , 6? ∈ � such that
61 · · · 6? = 4. The number of elements in - is |� |?−1. This is because 61, ..., 6?−1
can be arbitrarily chosen from � and then 6? is fixed to be (61 · · · 6?−1)−1.
Let � be the group (Z? , +, 0). Let � act on - by q((61, 62, · · · , 6?−1, 6?)) =
(6? , 61, · · · , 6?−2, 6?−1). Every (61, · · · , 6?) has a stabilizer which is a subgroup
of � (not �! Do not confuse the dummy letter/variable labeling the group in
Proposition 11.1. Stab(G) is a subgroup of the group "doing the acting," which
we called � in this case not �). But |� | = ? so the stabilizer of any (61, · · · , 6?)
in - must be of cardinality 1 or ?. By the Orbit-Stabilizer theorem, we know
|Orb((61, · · · , 6?)) | · | Stab((61, · · · , 6?)) | = |� | = ?. Thus, the orbits must have
size 1 or ?. Now, recall that the orbits partition - . Thus, the orders of all of the
orbits must give |� |?−1. In particular, note that |� |?−1 = 0 (mod ?) since ? | |� |
by assumption. Thus, the sum of the orders of all the orbits must also be 0 (mod ?).
But (4, · · · , 4) is clearly in an orbit of its own. If all other orbits had order ?
then we would get |� | = 1 (mod ?), a contradiction. Thus, there must at least
another orbit, call it Orb((G1, · · · , G?)), disjoint from Orb((4, · · · , 4)) such that
|Orb((G1, · · · , G?)) | = 1. Thus, G1 = · · · = G? with G1 · · · G? = 4, meaning G?1 = 4

where G1 ≠ 4. �

Definition 11.5 Let ? be a prime. A ?-group is a group of order ?: for some integer
: ≥ 0.

Example 11.7 Z8, Z4 × Z2, Z2 × Z2 × Z2, �4, &8 are 2-groups.

Theorem 11.4 Any ?-group has a nontrivial center. That is, / (�) ≠ {4} if � is a
?-group.

Proof Let � be a ?-group with |� | = ?: for some nonnegative integer : . Let � act
on itself by conjugation. The orbits are the conjugacy classes. For any G ∈ �, the
centralizer is a subgroup of� so, by Lagrange’s theorem, has order ?; for 0 ≤ ; ≤ : .
Therefore, by the Orbit-Stabilizer theorem, the conjugacy class of G has size ?:−;
which is 0 (mod ?) if : ≠ ; or 1 (mod ?) if : = ;. Since the conjugacy classes
partition �, their orders must add up to |� |. But |� | ≡ 0 (mod ?) so the orders of
the conjugacy classes must also add up to 0 (mod ?). Note that {4} is a conjugacy
class and has order 1. If all other conjugacy classes had order not equal to 1, then
we would get |� | ≡ 1 (mod ?), a contradiction. Thus, there exists at least one
other conjugacy class {6} with order 1 which is distinct from {4}. By Theorem 9.2,
6 ∈ / (�) so the center is nontrivial. �

Theorem 11.5 Let ? be a prime. Any group of order ?2 is isomorphic to Z?2 or
Z? × Z? .
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Proof Let � be a group of order ?2. Then / (�) ≠ {4}. Pick G ∈ / (�) with G ≠ 4.

• Case 1: If |G | = ?2, then clearly � = 〈G〉 and � � Z?2 .
• Case 2: If |G | = ?, then consider 〈G〉. Pick a H ∈ � such that H ∉ 〈G〉 (this also
includes H ≠ 4 since 4 ∈ 〈G〉). Since G ∈ / (�), GH = HG. Define q : Z?×Z? → �

by (8, 9) ↦→ G8H 9 . This is an isomorphism. Thus, � � Z? × Z? . �

Example 11.8 Any group � such that |� | = 4 = 22 is isomorphic to either Z4 or
Z2 × Z2.

Example 11.9 Any group � such that |� | = 9 = 32 is isomorphic to either Z9 or
Z3 × Z3.

We can now fill in our table a bit more. See Table 11.1.

Table 11.1: Classification of some groups, up to isomorphisms.

|G| How many? What are they?
1 1 {e}
2 1 Z2
3 1 Z3
4 2 Z4, Z2 × Z2
5 1 Z5
6 2 Z6, �3 � (3
7 1 Z7
8 later... later...
9 2 Z9, Z3 × Z3
10 2 Z10, �5
11 1 Z11
12 later... later...
13 1 Z13
14 2 Z14, �7
15 1 Z15

Actually, we won’t spend much time on what are called the Sylow Theorems.
The Sylow Theorems are needed to classify groups of order 12, up to isomorphisms.
Here is the answer, which we haven’t proved: If � is a group such that |� | = 12
then � is isomorphic to one of the following: Z12,Z6 ×Z2, �6, the dicyclic group of
order 12, and �4.

11.3 Ruminations

Let us step back for a second and appreciate what we have accomplished so far. We
started with an abstract definition of what a group is, using inspiration/motivation
from the symmetries of solid in R3. Eventually, we were able to show that the
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requirements that go into a group are strict enough that they put restrictions of what
groups exist. In particular, our table above classifies all finite discrete groups up to
order 15. Therefore, if you think you have a group with order less than or equal to 15
but it doesn’t match one of our groups listed (up to isomorphisms) your first reaction
should not be "Eureka! I found a new group!" but rather "Aw shucks, where did I
make a mistake...". Also, this means that we only really have to work hard to prove a
bunch of theorems about the groups listed in Table 11.1. If one finds a group of order
15 or less, then the properties of that group don’t have to be rediscovered but can be
read off from the theorems corresponding to the group to which it is isomorphic to.

Problems

11.1 Let � be a finite group with exactly two conjugacy classes. Show that � has
order two.

11.2 Let q : � → (- be the action of � on a set -. Show that every point of some
orbit has the same stabilizer if and only if this stabilizer is a normal subgroup of �.

11.3 Discuss the structure of the orbits and the stabilizers in each of the following
group actions on R4 :

a) The usual action of �!4 (R).
b) Identify R4 with R2 × R2 and take the product action of ($2 × ($2.
c) Think of R4 as C × C and let (*2 act in the usual way.
d) Identify R4 with R3 × R and take the product action of ($3 × Z, where Z acts

on R by addition.

11.4 Let - = {1, 2, 3, 4} and let � be the subgroup of (4 generated by (1 2 3 4) and
(2 4).Work out the oribts and stabilizers for the diagonal action of � on - × -.

11.5 The rotational symmetry group of a cube is isomorphic to (4. Consider the
subgroup �4 and act on the set of vertices of the cube. Find the orbit and stabilizer
of each vertex.

11.6 In this problem, include 1-cycles in a cycle shape. Let V ∈ �=. Show that the
conjugacy class of V in (= splits into two conjugacy classes in �= if the lengths in
the cycle shape of V are all odd and are distinct. Show that, otherwise, the conjugacy
class of V is (= is a single conjugacy class in �=. (Hints: Compare the centralizer
of V in (=, denoted �(= (V), with the centralizer of V in �=, denoted ��=

(V). Use
Problem 3.10.)

11.7 Let � be a group of order ?3, where ? is a prime.

a) Show that the center of � cannot have order 1 or order ?2.
b) Let ? be an arbitrary prime number. Give examples of groups of order ?3 whose

centers have the two possible orders ? or ?3.





Chapter 12
Matrix Groups

Abstract In this chapter, we will cover the most common matrix groups that occur
in a physics setting.

12.1 Orthogonal Matrices

Definition 12.1 Let + be a real vector space of dimension =. A bilinear form on + ,
denoted 〈x, y〉 for x, y ∈ + , is a function + ×+ → R satisfying:

1. 〈0x1 + 1x2, y〉 = 0〈x1, y〉 + 1〈x2, y〉,
2. 〈x, 0y1 + 1y2〉 = 0〈x, y1〉 + 1〈x, y2〉,

for any 0, 1 ∈ R.

Example 12.1 The standard dot product on R= is

〈x, y〉 =
=∑
:=1

G: H: . (12.1)

Example 12.2 The Lorentzian product on R4 is 22C1C2 − G1G2 − H1H2 − I1I2.

Example 12.3 The standard (?, @) product is

〈x, y〉 =
?∑
:=1

G: H: −
?+@∑
:=?+1

G: H: . (12.2)

Definition 12.2 A matrix � is symmetric if � = �) .

Definition 12.3 A matrix � is skew-symmetric if � = −�) .

Note that for any matrix �, we have

117
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� =
1
2
(� + �) )︸       ︷︷       ︸
symmetric

+ 1
2
(� − �) )︸        ︷︷        ︸

skew-symmetric

, (12.3)

so that any matrix � can be written as a sum of symmetric and skew-symmetric
matrices.

Definition 12.4 Let 〈 , 〉 be a bilinear form. The group that preserves 〈 , 〉 is

{� ∈ �!= (R) | 〈�x, �y〉 = 〈x, y〉 for ∀x, y ∈ +}.

Definition 12.5 If 〈 , 〉 is the standard dot product, then the group preserving it is
the orthogonal group, written $= (R).

Remark: Following the definitions, we can see that

$= (R) = {� ∈ �!= (R) | �) � = �=×=}. (12.4)

Our convention is that vectors are =-by-1 matrices, rather that 1-by-= matrices.
If x, y are (column) vectors and we consider the standard dot product, then

x · y = x) y. Therefore, 〈�x, �y〉 = 〈x, y〉 is

(�x)) (�y) = x) y (12.5)
⇒ x) �) �y = x) y (12.6)

for all x, y ∈ + . Thus, �) � = �=×=, as claimed. This also gives �−1 = �) .
Verify that the definition makes sense and the $= (R) is indeed a group.

Definition 12.6 If 〈 , 〉 is the (?, @) form with ? + @ = =, then the group preserving
it is written $ ?,@ (R).

Note:

Proposition 12.1 If � ∈ $= (R), then det � = ±1.

Proof This follows from

det(�) �) = det �=×= (12.7)
det �) · det � = det �=×= (12.8)

(det �)2 = 1. (12.9)

�

Definition 12.7 ($= (R), the special orthogonal group, is

($= (R) = {� ∈ $= (R) | det � = 1}.

($= (R) is a (normal) subgroup of $= (R) since det is a homomorphism.
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Corollary 12.1 $= (R) is the union of two cosets ($= (R) ∪ � · ($= (R) where � is
an orthogonal matrix with det� = −1.

Proposition 12.2 ($2 (R) = {
[
cos \ − sin \
sin \ cos \

]
| \ ∈ R}.

Proof The requirement that � ∈ ($2 (R) means that the columns of � are orthogo-
nal, that the columns (considered as vectors) have norm 1, and that the determinant
be 1. Write

� =

[
0 1

2 3

]
. (12.10)

Then � ∈ $2 (R) requires

02 + 22 = 1 (12.11)

12 + 32 = 1 (12.12)
01 + 23 = 0. (12.13)

Note that 02 + 12 = 1 with 0, 1 ∈ R means that we can parametrize 0, 2 as 0 = cos q
and 2 = sin q for some q ∈ R. Once 0, 2 are written in this way, we see that the
require 01 + 23 = 0 is satisfied for 1 = sin q and 3 = − cos q or 1 = − sin q and
3 = cos q.

• If 1 = sin q and 3 = − cos q then

� =

[
cos q sin q
sin q − cos q

]
. (12.14)

Note that det � = −(cos q)2 − (sin q)2 = −1. Matrices such as these do not
belong to ($2 (R).

• If 1 = − sin q and 3 = cos q then

� =

[
cos q − sin q
sin q cos q

]
. (12.15)

Note that det � = (cos q)2 + (sin q)2 = 1. �

Theorem 12.1 Any element of ($3 (R) is a rotation about some axis. Matrices such
as these belong to ($2 (R). (The �3×3 case is trivial, as it rotates by 0 around any
axis.)

Proof Every orthogonal matrix (with all entries in R) is diagonalizable over C.
This follows from the spectral theorem in linear algebra. To be the eigenvalues of
� ∈ ($3 (R), one needs to solve for _ in the polynomial

det(_�3×3 − �) = 0. (12.16)
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There are 3 solutions to such an equation, and they are the 3 eigenvalues of �.
Actually, because � ∈ ($3 (R) is means that all the coefficients of the characteristic
polynomial are real. Recall that if a polynomial has coefficients which are purely
real then if there exists a root _: that has a nonzero imaginary component, then _∗

:

(the complex conjugate of _: ) is also a root (can you prove this?). We claim that in
our case +1 is always a root.

• WLOG, suppose that _1 is real while _2, _3 are complex. Then _2 = _
∗
3. But

then det � = 1 means

_1_2_3 = 1 (12.17)

_1 |_2 |2 = 1. (12.18)

However,

�v = _1v (12.19)
(�v)) (�v) = v) �) �v = v) v (12.20)

(_1v)) (_1v) = _2
1v) v (12.21)

so _2
1 = 1 (being an eigenvector means v ≠ 0, by definition, so we can cancel

v) v on both sides of v) v = _2
1v) v). Therefore, _1 = ±1. However, |_2 |2 > 0

(det � = 1 means no eigenvalue can be 0) so _1 |_2 |2 = 1 implies _1 = +1.
• Suppose _1, _2, _3 are all real. Then det � = 1 means

_1_2_3 = 1 (12.22)

which implies that one of the eigenvalues must be +1.

Thus, there is always at least one eigenvector, call it v, with eigenvalue +1.Normalize
the eigenvector v ↦→ v/|v| and choose an orthonormal basis for R3 where the
eigenvector v/|v| is the first basis vector. This means that there exists a basis in
which � ∈ ($3 (R) takes the form

� =


1 0 0
0 111 112
0 121 122

 . (12.23)

Define

� =

[
111 112
121 122

]
. (12.24)

Then det � = 1 means that 1 · det � = 1 so det � = 1. Since � ∈ $3 (R), � = �)

which means 112 = 121. Therefore, � = �) and det � = 1, so � ∈ ($2 (R). Thus,
we see that � is a rotation around some axis (namely, the axis determined by the
eigenvector v/|v| passing through the origin). �
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Proposition 12.3 If = is odd, $= (R) � ($= (R) × Z2.

Proof Already proved in Example 6.5. �

12.1.1 Special Relativity

This section is for those who are familiar with special relativity. In special relativ-
ity, the assumption about physical reality (which has been experimentally verified
numerous times) is that the speed of light is the same in all reference frames. Intu-
itively, think of it as meaning that it doesn’t matter whether you run toward or away
from someone shining a flashlight at you. In any case, the observer (you, but could
be any object) observes the light moving at the same speed regardless. One of the
consequence of this is that the coordinates of an event in two reference frames are
related by a linear transformation, different from what one expects based on classical
physics. Label the coordinates in one reference without primes and the other with
primes. Suppose that we align the coordinates of the reference frames so that the
motion between the two frames is in the G/G ′ direction. In special relativity, it is
derived that (C, G, H, I) and (C ′, G ′, H′, I′) are related as follows:

C ′ = W(C − EG/22) (12.25)
G ′ = W(G − EC) (12.26)
H′ = H (12.27)
I′ = I (12.28)

where W = 1/
√

1 − (E/2)2. In matrix form, this is
C ′

G ′

H′

I′

 =

W −WE/22 0 0
−WE W 0 0

0 0 1 0
0 0 0 1



C

G

H

I

 . (12.29)

One thing to notice is that the quantity

(2C)2 − G2 − H2 − I2 = (2C ′)2 − G ′2 − H′2 − I′2 (12.30)

is independent of the reference frame (verify this!). Actually, in quantum field theory
one gets tired of writing so many letters. What one does is write G` where one
thinks of G` = (G0, x) as a vector. Here G0 is the time component and x are the
spatial components. x has � components, so in total there are 3 = 1+� dimensions.
One might argue that maybe � should be the total dimension and 3 should be the
spatial dimension, but for some reason most quantum field theory books use � for
the number of non-temportal dimensions and 3 is the total dimension of the theory.
Note that the physicists’ way of referring to spatial component might differ from
a mathematicians. If one has a 3-dimensional space, the mathematician would say
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one has 3 spatial dimensions. However, the physicist often means that the spatial
components are the non-temporal parts of the 3-dimensional space. In any case,
quantum field theorists often follow the convention of setting 2 = 1. This then means

G ′0 = W(G0 − EG1) (12.31)

G ′1 = W(G1 − 1G0) (12.32)

G ′2 = G2 (12.33)
... =

... (12.34)

where W = 1/
√

1 − E2. Next, note that

W2 − (WE)2 = 1
1 − E2 −

E2

1 − E2 (12.35)

= 1.

This means that we can parametrize the W and WE expressions as cosh A and sinh A
for some A ∈ R, where A is known as the rapidity. The transformation can then be
written as 

G ′0

G ′1

G ′2

...


=


cosh A sinh A 0 . . .
sinh A cosh A 0 . . .

0 0 1 . . .
...

...
...
. . .



G0

G1

G2

...


. (12.36)

This can be written in a matrix-like notation as G ′ = !G. All Lorentz transformations
may be written this way by taking different matrices !.However, the matrices cannot
be any 3-by-3 matrices, as we shall see.

Any vector that transforms like G ↦→ !G is called a Lorentz 3-vector. A feature
of such Lorentz vectors is that the quantity (G0)2 − x2 does not change after the
transformation. A quantity that doesn’t change after a Lorentz transformation is
known as a Lorentz scalar. Actually, define

[ =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (12.37)

Then we note that

(G0)2 − x2 = G) [G (12.38)

where G = (G0, x). More generally, for any vectors 0 and 1 one has that a Lorentz
transformation sends
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0) [1 ↦→ 0′[1′ = (!0)) [(!1) (12.39)
= 0) !) [!1.

For this to be a Lorentz scalar for all Lorentz vectors 0 and 1, it must be true that
!) [! = [. Thus, the Lorentz transformations are determined by matrices ! that
satisfy

!) [! = [. (12.40)

The Lorentz transformations comprise a group (check this!).

12.2 Unitary Matrices

Definition 12.8 Let + be a complex (C) vector space of dimension =. A sesquilinear
form on + , denoted 〈x, y〉 for x, y ∈ + , is a function + ×+ → C satisfying:

1. 〈0x1 + 1x2, y〉 = 0∗〈x1, y〉 + 1∗〈x2, y〉,
2. 〈x, 0y1 + 1y2〉 = 0〈x, y1〉 + 1〈x, y2〉,

for any 0, 1 ∈ C.

Example 12.4 The standard dot product on C= is

〈x, y〉 =
=∑
:=1

G∗: H: . (12.41)

Comment: Mathematicians might be used to

〈x, y〉 =
=∑
:=1

G: H
∗
: . (12.42)

The overwhelming majority of physics textbooks conjugate the left term rather than
the right term. One can spend (waste) time arguing over which convention is better,
but we won’t. In physics, choosing to put the conjugation on the left makes things
a bit cleaner since it moves all the operations to the left-hand side. For example,
calculating the expectation value of the momentum operator in quantum mechanics
becomes

〈p̂〉 =
∫ ∫ ∫

33G k∗ (x, C) (−8ℏ∇)k(x, C) , (12.43)

and the convention is such that the conjugation is on the left rather than on the
operator in the middle or on the wave function on the right. In other math settings,
maybe putting the conjugation on the right term makes some expressions appear
"cleaner" by resulting in formulas that don’t have a conjugation on terms. In the end,
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things like minus signs or conjugations usually don’t go away in formulas and it’s
a matter of choosing in what definition or formula one wants the minus signs or
conjugation terms to appear. The choices differ depending on the field of study.

Definition 12.9 Let 〈 , 〉 be a sesquilinear form. The group that preserves 〈 , 〉 is

{� ∈ �!= (C) | 〈�x, �y〉 = 〈x, y〉 for ∀x, y ∈ +}.

Definition 12.10 If 〈 , 〉 is the standard inner product onC= then the group preserving
it is the unitary group, written*= (C).

Remark: Following the definitions, we can see that

*= (C) = {� ∈ �!= (C) | �∗) � = �=×=}. (12.44)

This means that �−1 = �∗) for any unitary matrix �.

Proposition 12.4 If � ∈ *= (C), then | det �| = 1.

Proof This follows from

det(�∗) �) = det �=×= (12.45)
det �∗) · det � = det �=×= (12.46)

| det �|2 = 1. (12.47)

The complex modulus or a complex number is real and greater than or equal to 0.
However, | det �| can’t be 0 since � must be invertible. Therefore, | det �| > 0 so we
conclude that | det �| = 1. �

Definition 12.11 (*= (C), the special unitary group, is

(*= (C) = {� ∈ *= (C) | det � = 1}.

Verify that the definition makes sense and that (*= (C) is indeed a group.

Problems

12.1 a) Show that the elements of*2 have the form
[

I F

−48qF∗ 48qI∗
]
where F, I ∈

C, q ∈ R, and |F |2 + |I |2 = 1.
b) Which of these matrices belong to (*2?

12.2 a) Prove that ($3 (R) has a trivial center.
b) Prove that (*2 has a nontrivial center. (Hint: Consider

[
I 0
0 I

]
for an appropriate

I.)
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c) Conclude ($3 (R) � (*2.Why can we conclude this?

12.3 Let � be an = × = matrix with entries in C. Define

4� ≡
∞∑
:=0

�:

:!
= 1 + � + �

2

2!
+ �

3

3!
+ · · · .

a) Prove that this series converges.
b) Prove that det(4�) = 4Tr(�) .





Chapter 13
Isomorphism Theorems

Abstract In this chapter, we will cover important isomorphism theorems.

13.1 The Isomorphism Theorems

Before proceeding, it might be a good time to review Theorem 4.1.

Proposition 13.1 Let q : � → � ′ be a homomorphism. ker q is a normal subgroup
of �.

Proof Note that q(4) = 4′ so ker q is nonempty. Suppose G, H ∈ ker q. Then

q(GH−1) = q(G)q(H−1) = q(G)q(H)−1 = 4′(4′)−1 = 4′. (13.1)

Therefore, GH−1 ∈ ker q. By Theorem 1.1, ker q is a subgroup of �. It is a normal
subgroup because for any G ∈ ker q and any 6 ∈ � we have

q(6G6−1) = q(6)q(G)q(6)−1 = q(6)4′q(6)−1 = 4′, (13.2)

so 6G6−1 ∈ ker q. Therefore, 6(ker q)6−1 ⊆ ker q for any 6 ∈ �. (Actually, since
conjugation is bĳective we have 6(ker q)6−1 = ker q.) �

Proposition 13.2 Let q : � → � ′ be a homomorphism. q is injective if and only if
ker q = {4}.

Proof ⇒ We proved q(4) = 4′ for any homomorphism (see Theorem 4.1). If q is
injective then q(G) ≠ 4′ for any G ∈ � with G ≠ 4. Therefore, ker q = {4}.
⇐ Suppose ker q = {4}. Let G, H ∈ � and suppose q(G) = q(H). Then

q(G)q(H)−1 = 4′ (13.3)

q(G)q(H−1) = 4′ (13.4)

q(GH−1) = 4′. (13.5)

127
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Thus, GH−1 ∈ ker q, so GH−1 = 4 ⇒ G = H. Therefore, q is injective. �

Definition 13.1 Let # E �. The homomorphism c : � → �/# defined by

c(6) = 6#

is called the natural projection (homomorphism) of � onto �/#.

Theorem 13.1 The Fundamental Theorem of Homomorphisms (or The First Iso-
morphism Theorem) - Let q : � → � ′ be a homomorphism. Let  = ker q. Then
�/ � im q. The isomorphism sends G ↦→ q(G).

Proof Let k : �/ker q→ im q be defined by k(G ) = q(G). Then

• k is well-defined, in the sense that this definition is independent of the coset
representative used. Suppose G̃ ∈ G and consider k(G̃). Then, since G̃ ∈ G ,
there exists a : ∈  such that G̃ = G: . Therefore,

k(G̃ ) = q(G̃) = q(G:) = q(G)q(:) = q(G)4′ = q(G) = k(G ). (13.6)

• k is a homomorphism. Note that

k(G )k(H ) = q(G)q(H) = q(GH) = k(GH ) = k(G H ), (13.7)

where the last equality follows because  = ker q E �.
• k is injective. G is in the kernel of k if and only if q(G) = 4′ if and only if
G ∈ ker q if and only if G ∈  . Therefore, kerk = 4 . In equations,

kerk = {G | k(G ) = 4′} (13.8)
= {G | q(G) = 4′}
= {G | G ∈ ker q ≡  }
= 4 .

By Proposition 13.2, k is injective.
• k is surjective by definition. Pick H ∈ im q. Then there exists G ∈ � such that
q(G) = H. Therefore, k(G ) = q(G) = H.

Therefore, k : �/ker q → im q is an explicit isomorphism demonstrating that
�/ker q � im q, as claimed. �

Corollary 13.1 Let q : � → � ′ is be a homomorphism. Then |� : ker q | = |q(�) |.

Corollary 13.2 If q : � → � ′ is a surjective homomorphism then �/ker q � � ′.

When first learning about the theorem (and the ones that follow later in this
chapter), the following are common:

• Visible confusion at the start.
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• After coming back at a later time and rereading the proof, the proof makes sense
from an algebraic point of view. The manipulations of the symbols make sense.
However, while the proof and theorem make sense from sentence to sentence
the big idea is still a bit unclear.

• After a few more rereads, seeing a few examples, and working out some simple
problems the theorem makes sense.

Before continuing with examples, maybe it’s a good time to stop and try to make
more sense of the theorem. Let’s use pictures to try to visualize what is happening.

• Start with a homomorphism q : � → � ′. See Figure 13.1.

Fig. 13.1: A visualization of two groups �,� ′ and a homomorphism q : � → � ′.
It is not required that im q = � ′. This is demonstrated in the figure by using more
dots to represent � ′ than �.

• Next, note that ker q E � (by Proposition 13.1). Let A1, A2, · · · , A: be represen-
tatives of the left cosets of ker q in �. WLOG, let A1 = 4. What this means is
that the distinct left cosets of ker q in � are

4 ker q = A1 ker q, A2 ker q, . . . , A: ker q. (13.9)

Again, recall that this means that they are pairwise disjoint and that their union
gives �:

A8 ker q ∩ A 9 ker q = ∅, 8 ≠ 9 (13.10)

∪:8=1A8 ker q = �. (13.11)

Note that elements in the same left coset of ker q in � get mapped to the same
element in � ′ (this is established in the line "k is well-defined..." at the start of
Theorem 13.1). See Figure 13.2. In the figure, we consider a case where : = 5
and q is not surjective.

• Pictorially, it seems that if we ignore all the "left over" points in � ′ (namely,
the ones not in the image of q) then it looks like one can match (all) elements
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Fig. 13.2: Another visualization of two groups�,� ′ and a homomorphism q : � →
� ′, where now we use the fact that all elements in a given left coset of ker q in � get
mapped to the same element in � ′. Note also that q does not need to be surjective,
hence the "left over" dots on the right.

in � with (some) elements in � ′. The elements of � ′ that are in im q have the
structure of a group (im q ≤ � ′, by Theorem 4.1), and so it seems likely that
this group structure is mimicked by the elements in �. Unless ker q = {4}, then
the mimicking is not done by individual elements in � but rather by sets of
elements in � (namely the left cosets of ker q in �). The theorem formalizes all
of this and states it in a precise way.

• Let’s summarize. Define c : � → �/ker q by c(6) = 6 ker q. Define
k : �/ker q → im q by k(G ker q) = q(G). Let q : � → � ′ be the given
homomorphism. Then the First Isomorphism Theorem says that k is an isomor-
phism and that q = k ◦ c. That is, the following diagram commutes:

� �/ker q

im q

c

q
k

See Figure 13.3 for a visualization of this statement.

Hopefully this discussion and the figures have shed some light onwhat the theorem
is about. Here are a few examples that use the First Isomorphism Theorem.

Example 13.1 Consider det : �!= (F) → F× = F − {0}. det is a homomorphism.
ker det = (!= (F) = {� | det � = 1}. Thus, (!= (F) E �!= (F) by Proposition 13.1.
The image of det is all of F× since for any 2 ∈ F× the identity matrix with one
diagonal element replaced with 2 has a determinant 2.
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Fig. 13.3: Diagram showing the relationship between �, q, im q ⊆ � ′, �/ker q, k,
c.

Example 13.2 The determinant of unitary matrices is in C of modulus 1. Let � be
the set of all complex numbers of modulus one. Then det*= maps into �. Actually,
replacing one diagonal element of the identity matrix by 48 \ with \ ∈ R shows that
det maps *= onto �. Also, ker det in this case is (*=. Theorem 13.1 and Corollary
13.2 imply

*=/(*= � �. (13.12)

Example 13.3 Let � = (R, +, 0) and q : R → � defined by q(C) = 42c8C . This is a
homomorphism with ker q = Z. Therefore, R/Z � �.

Example 13.4 Let � = (4 and + = {4, (1 2) (3 4), (1 3) (2 4), (1 4) (2 3)}. (Actually,
+ � Z2 × Z2.) + is a normal subgroup because it is a union of conjugacy classes of
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(4. That is,

+ = {4} ∪ {(••)(••)}. (13.13)

(4/+ must be a group of order 24/4 = 6. There is no 6 ∈ (4 with order 6, so there
is no left coset 6+ with order 6. Therefore, (4/+ � Z6. Combining this observation
with Theorem 8.2, we conclude that (4/+ � �3 � (3.

Example 13.5 Let� = (3 and let q : (3 → {±1} � Z2 be defined by q(6) = sgn(6).
Then q is a homomorphism.Also, im q = Z2 since (3 has even and odd permutations.
Note that ker q = {6 | 6 ∈ (3, q(6) = +1} = �3. Therefore, (3/�3 � Z2. More
generally, (=/�= � Z2 for any integer = ≥ 3. That (=/�= � Z2 for = ≥ 3 can also
be arrived at by �= E (= (from [(= : �=] = 2 and Theorem 10.1) along with the
fact that Z2 is the only group of order 2, up to an isomorphism.

Theorem 13.2 The Second Isomorphism Theorem (or The Diamond Isomorphism
Theorem) - Let � be a group. Let � ≤ �, � E �. Then �� ≤ �, � ∩ � E �, and
��/� � �/(� ∩ �).

Proof �� ≤ �. Note that �� is nonempty since 4 ∈ � and 4 ∈ �, so 4 ∈ ��. Let
G1, G2 ∈ ��. Then G1 = ℎ1 91 and G2 = ℎ2 92 for some ℎ1, ℎ2 ∈ � and 91, 92 ∈ �. Then

G1G
−1
2 = (ℎ1 91) (ℎ2 92)−1 = ℎ1 91 9

−1
2 ℎ−1

2 = (ℎ1ℎ
−1
2 ) (ℎ2 91 9

−1
2 ℎ−1

2 ) ∈ ��. (13.14)

The last part follows because � is a subgroup so ℎ1ℎ
−1
2 ∈ �, � is a subgroup so

91 9
−1
2 ∈ � and so, since � is a normal subgroup, ℎ2 91 9

−1
2 ℎ−1

2 ∈ �. By Theorem 1.1,
�� ≤ �.
Now define the map q : � → ��/� by q(G) = G�. We then have

• q is a homomorphism since

q(GH) = GH� = G�H� = q(G)q(H) (13.15)

for any G, H ∈ �, where the second equals sign follows because � E �.
• q is surjective. Suppose G� ∈ ��/�. Then, since G ∈ ��, there exist ℎ ∈ �, 9 ∈ �
such that G = ℎ 9 . Then

G� = ℎ 9� = ℎ� = q(ℎ). (13.16)

Therefore, any element in G� ∈ ��/� is the image of some ℎ ∈ �.
• The kernel of q consists of

ker q = {ℎ ∈ � | q(ℎ) = 4�} (13.17)
= {ℎ ∈ � | ℎ� = 4�}
= {ℎ ∈ � | ℎ ∈ �}
= {ℎ | ℎ ∈ � and ℎ ∈ �}
= � ∩ �.
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Use Theorem 13.1 to conclude that

�/ker q � im q⇒ �/(� ∩ �) � ��/�. (13.18)

Theorem 13.3 Third Isomorphism Theorem - Let � ≤ � ≤ � with � E �, � E �
(and hence also � E �). Then �/� E �/� and (�/�)/(�/�) � �/�.

Proof Define a homomorphism q : �/� → �/� by q(G�) = G� for all G ∈ �.
Then

• q is well-defined since � ≤ �. Suppose G1� = G2�. Then there exists an ℎ ∈ �
such that G1 = G2ℎ. But then

q(G1�) = q(G2ℎ�) = G2ℎ� = G2� (13.19)

since � ≤ � so that ℎ ∈ � is also in �.
• q is a homomorphism since � E � and � E � so

q(G�)q(H�) = G�H� = GH� = q(GH�) = q(G�H�) (13.20)

for any G, H ∈ �.
• q is surjective (im q = �/�) since G ∈ � is arbitrary, so q(G�) = G� gives all
cosets of �/� as G runs through all the elements G ∈ �.

• ker q = �/�. This is because G� ∈ ker q if and only if q(G�) = G� = 4� if and
only if G ∈ �. In equations,

ker q = {G� ∈ �/� | q(G�) = 4�} (13.21)
= {G� ∈ �/� | G� = 4�}
= {G� ∈ �/� | G ∈ �}
= �/�.

By Theorem 13.1, (�/�)/ker q � im q. That is, (�/�)/(�/�) � �/�. �

One way to remember the above theorem is to note that (�/�)/(�/�) � �/�
looks a bit like the cancellation one does when reducing fractions. For example,
(2/3)/(5/3) = 2

3
3
5 = 2/5. Warning: Don’t take this too literally. It holds under the

conditions mentioned in Theorem 13.3, but don’t expect it to hold for all cosets.

Problems

13.1 Let U = (1 3 5 7 9) (2 4 6) (8 10) ∈ (10. Let 5 : (Z, +, 0) → 〈U〉 be the
homomorphism < ↦→ U<.

a) Find # so that ker 5 = #Z.
b) Find all < ∈ Z# such that 5 (<) is a 5-cycle.
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13.2 Show that � × {4} is a normal subgroup of � × � and that the quotient group
(� × �)/(� × {4}) is isomorphic to �.

13.3 Let �, � be groups. Let � E � and � E �. Prove that �× � E � ×� and that
(� × �)/(� × �) � (�/�) × (�/�).

13.4 (Example of the First Isomorphism Theorem)

a) Given numbers 0 ∈ R − {0}, 1 ∈ R define a function 5 (0, 1) from R to R by
5 (0, 1) = 0G + 1. Show that the collection of all such functions forms a group
�, where the binary operation is function composition. If � consists of those
elements of � for which 0 = 1, prove that � E � and that �/� � R − {0}.

b) Define the affine general linear group ��!1 (R) to be the subset of �!2 (R)

where the matrices have the form
[
0 1

0 1

]
. Show that ��!1 (R) is a subgroup of

�!2 (R) and that the group of functions in the previous part is isomorphic to
��!1 (R).

(Hint:
[
0 1

0 1

] [
G

1

]
=

[
0G + 1

1

]
.)

13.5 (Example of the Second Isomorphism Theorem) Let � = (4. Let � be the
Klein 4-group. That is, let � = {4} ∪ {(••)(••)}. Since � is the union the {4} and
{(••)(••)} conjugacy classes of (4, we have � E (4 (see Proposition 10.4). Let
� = 〈(1 3) (2 4)〉, another Klein 4-group.

a) Find ��. To which familiar group is it isomorphic to? Why?
b) Find � ∩ �. Describe explicitly the isomorphism

��/� � �/(� ∩ �).

13.6 Let q : � → � ′ be a surjective homomorphism and let  denote its kernel. If
� ′ is a subgroup of � ′ define

q−1 (� ′) = {6 ∈ � | q(6) ∈ � ′}.

a) Verify that q−1 (� ′) is a subgroup of � which contains  .
b) Verify that the correspondence � ′↔ q−1 (� ′) is a bĳection between the collec-

tion of all subgroups of � ′ and the collection of all those subgroups of � which
contain  .

13.7 (Example of the Third Isomorphism Theorem and Problem 13.6) Let � = (4.
Let � be the Klein 4-group. That is, let � = {4} ∪ {(••)(••)}.

a) Show that there is an isomorphism 5 : �/� �−→ (3.
b) Let H be the set of all the subgroups � ≤ � that satisfy � ≤ � ≤ �. Make a

table with one row for each �. The row should have two entries: �, and �/�
expressed as a subgroup of (3 via 5 . Show that the table gives a one-to-one
correspondence between H and all the subgroups of (3. (We say that the �’s
are the lifts mod � of the subgroups of (3.)
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c) In the cases where � E �, describe explicitly the isomorphism

(�/�)/(�/�) � �/�

of the Third Isomorphism Theorem.

13.8 Let � be a group with |� | = ?=<, where ? is a prime and < is relatively prime
to ? (in other words, gcd(?, <) = 1). Suppose � has a normal subgroup � of order
?=.

a) Give an example of such a � and �, with � non-abelian, = > 1, and < > 1.
b) If � is a subgroup of � of order ?: , show that � ≤ �.

13.9 a) Show that if a finite group � has a subgroup � of index =, then there is
a normal subgroup # E � with # E � and [� : #] a divisor of =!. (Hint:
Consider the action of � on �/� by left translations.)

b) Let ? be the smallest prime dividing the order of a finite group �. Show that
any subgroup � ≤ � of index ? is normal.
This generalizes the theorem that any subgroup of index 2 is a normal subgroup.

Note: A subgroup of index ? does not necessarily exist. For instance, �4 has no
subgroup of index 2. If a subgroup of index ? exists, then this problem is applicable.





Chapter 14
Counting Orbits

Abstract In this chapter, we introduce a powerful method for enumeration. In par-
ticular, we will see how objects with symmetry can be enumerated by using group
theory.

14.1 Counting

Consider the following problem:

How many different ways are there to color the vertices of a square using only two
colors?

See Figure 14.1, where we show 24 squares with colored vertices.

(1 (2 (3 (4 (5 (6 (7 (8

(9 (10 (11 (12 (13 (14 (15 (16

Fig. 14.1: Square vertices colored using two colors (white and orange, in this case).

The answer to our question seems to be that there are 24 = 16 ways to color the
vertices of a square using only two colors. However, to really make the question
well-defined, we must agree on how to count the colorings. For example, suppose
that the squares shown in Figure 14.1 appear as a design pattern on the top sides of
tiles made by a company. These tiles will eventually make it to a kitchen floor where
the home owner is a mathematician. The mathematician, who was a perspicacious
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student when taking a course on group theory in his or her undergraduate days,
notices the following:

• tiles with the design pattern (1 differ from all the other design patterns.
• tiles with the design patterns (2, (3, (4, (5 can all be rotated into one another.
• tiles with the design patterns (6, (7, (8, (9 can all be rotated into one another.
• tiles with the design patterns (10, (11 can all be rotated into one another.
• tiles with the design patterns (12, (13, (14, (15 can all be rotated into one another.
• tiles with the design pattern (16 differ from all the other design patterns.

The mathematician comes to the conclusion that the company makes 6 distinct tiles,
not 24 = 16 distinct tiles. The mathematician’s way of counting makes a bit more
sense. A manufacturer would likely have a machine that can print one of six designs
onto a tile during production, with the understanding that the person laying the tiles
will rotate the tiles as wanted and needed.

In sum, we have found that while we initially had 24 squares those 24 squares
partitioned into 6 orbits when acted on by the group of rotations of the square. When
asking how many different ways one can color something, it makes sense to agree to
count any designs as being the same coloring if they belong to the same orbit under
the action of the relevant symmetry group.

Before continuing we note that we only considered rotations acting on the tiles.
This is because the top of the tile usually has the design, and the bottom of the tile
is placed on spread mortar. Essentially, the relevant group when counting tiles is the
group of rotations of the tiles, and reflections are not relevant: the symmetry group
is isomorphic to Z4, not �4. Suppose that, instead one was counting a necklace with
4 equispaced beads, each of which can be colored choosing from two colors. In that
case, the group would be �4. However, even if reflections are allowed we notice that
we are still left with "the same" design patterns as before. In the case of coloring
a necklace with four beads using two colors, we conclude that there are 6 distinct
designs as well. We alert the reader that this is normally not the case. One needs to
be careful in reading a problem statement to know whether to allow reflections or
not as this will usually change the number of colorings allowed.

The example we presented is simple enough that a brute force solution is doable.
However, this method very quickly becomes tedious and untenable. A more sophisti-
cated and systematic method is desirable. Symmetry groups and orbits seem related
to enumeration. Is there a connection?

14.2 The Orbit-Counting Theorem

Definition 14.1 Let a group � act on a set - . Label the action by q : � → (- . Let
6 ∈ �. The fixed-point set of 6, denoted Fix(6) or -6, is the set

Fix(6) = {G ∈ - | q6 (G) = G}.
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Theorem 14.1 The Orbit-Counting Theorem - Let � be a finite group acting on a
finite set - . Let #>A1 be the number of orbits. Then

#>A1 =
1
|� |

∑
6∈�
| Fix(6) | = 1

|� |
∑
G∈-
| Stab(G) |.

Note: This is sometimes called Burnside’s lemma.

Proof Consider the set � = {(6, G) ∈ � × - | q6 (G) = G}. Count the size of this set
in two different ways.

• For a given 6 ∈ �, a pair (6, G) ∈ � if and only if G is fixed by 6. Therefore,

|� | =
∑
6∈�
| Fix(6) |. (14.1)

• For a given G ∈ - , a pair (6, G) ∈ � if and only if 6 is in Stab(G). Therefore,

|� | =
∑
G∈-
| Stab(G) |. (14.2)

By the Orbit-Stabilizer theorem, |� | = | Stab(G) | · |Orb(G) |. Therefore,

|� | =
∑
G∈-

|� |
|Orb(G) | = |� |

∑
G∈-

1
|Orb(G) | = |� |

∑
orbits

1 = |� |#>A1 , (14.3)

where we used the fact that elements in the same orbits have the same value of
|Orb(G) | so that each distinct orbit contributes 1 in the sum∑

G∈-
1

|Orb(G) | . Therefore,

#>A1 =
|� |
|� | =

1
|� |

∑
6∈�
| Fix(6) | = 1

|� |
∑
6∈�
| Stab(6) |. (14.4)

�

Theorem 14.2 Let � be a group. If 61, 62 ∈ � are conjugate then | Fix(61) | =
| Fix(62) |.

Proof If 61, 62 ∈ � are conjugate, that means there exists an element 6 ∈ � such
that 62 = 6616

−1. Let G ∈ Fix(61). Let us consider q6 (G).Note that q6 (G) ∈ Fix(62)
since

q62 (q6 (G)) = q626 (G) = q6616−16 (G) = q661 (G) = q6 (q61 (G)) = q6 (G). (14.5)

This shows that | Fix(61) | ≤ | Fix(62) |. A similar argument shows that | Fix(62) | ≤
| Fix(61) |. Therefore, | Fix(61) | = | Fix(62) |. �

Theorem 14.2 is useful because it means that to calculate #>A1 using the orbit-
counting theorem, one only needs to calculate | Fix(6) | for one 6 in each conjugacy
class. This leads us to the following Corollary.
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Corollary 14.1 Let A1, · · · , A: be representative elements of the conjugacy classes of
a finite group �. Then

#>A1 =
1
|� |

∑
6∈�
| Fix(6) | = 1

|� |

:∑
9=1
| [A 9 ] | · | Fix(A 9 ) |.

Proof This follows directly from Theorem 14.1 and Theorem 14.2. �

14.2.1 Counting again

Let us redo the problem of counting the number of colorings of the vertices of
a square using two colors. Let’s first consider the case where only reflections are
allowed. The group of rotations of the square is {4, A, A2, A3} and, since this group
is abelian, each element is in its own conjugacy class. We want to find the sizes of
Fix(4), Fix(A), Fix(A2), and Fix(A3). See Figure 14.2 for the calculations. The work
is summarized in Table 14.1.

21

22 23

24

(a) Elements in Fix(4). Each vertex can
be colored independent of the colors of
the other vertices. Thus, | Fix(4) | = 24.

21

21 21

21

A

(b) Elements in Fix(A ). Coloring one
vertex 21 forces all the other vertices to
be 21. Thus, | Fix(A ) | = 21.

21

22 21

22

(c) Elements in Fix(A2). Coloring one
vertex 21 forces another to be 21. Col-
oring the third vertex 22 forces the re-
maining uncolored vertex to be 22 as
well. Thus, | Fix(A2) | = 22.

21

21 21

21

(d) Elements in Fix(A3). Coloring one
vertex 21 forces all the other vertices to
be 21. Thus, | Fix(A3) | = 21.

Fig. 14.2: Sketch-work for finding |Fix(6) | for representative elements 6 of the
conjugacy classes when the symmetry group only includes rotations.
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Table 14.1: Information needed for the orbit-counting theorem for a square when the
symmetry group is rotations only.

representative element 6 | [6] | | Fix(6) |
4 1 24

A 1 21

A2 1 22

A3 1 21

The orbit-counting theorem (in the form given in Corollary 14.1) gives

#>A1 =
1
4
(1 · 24 + 1 · 21 + 1 · 22 + 1 · 21)

= 6. (14.6)

Now let’s suppose that reflections are allowed, so the relevant group is �4. The
conjugacy classes are

{4}, {A, A3}, {A2}, {B, A2B}, {AB, A3B}. (14.7)

See Figure 14.3 for the calculations. The work is summarized in Table 14.1.

Table 14.2: Summary of information needed for the orbit-counting theorem for a
square when the symmetry group is rotations and reflections.

representative element 6 | [6] | | Fix(6) |
4 1 24

A 2 21

A2 1 22

B 2 22

AB 2 23

The orbit-counting theorem (in the form given in Corollary 14.1) gives

#>A1 =
1
8
(1 · 24 + 2 · 21 + 1 · 22 + 2 · 22 + 2 · 23)

= 6. (14.8)

Before continuing, let us generalize this problem a bit more and consider the
following question:

How many different ways are there to color the vertices of a square using : colors?

The beauty of the orbit-counting theorem is that the hard work has already been
done to solve this more general question. Our work in Figures 14.2 and 14.3 is all
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21

22 23

24

(a) Elements in Fix(4). Each vertex can
be colored independent of the colors of
the other vertices. Thus, | Fix(4) | = 24.

21

21 21

21

A

(b) Elements in Fix(A ). Coloring one
vertex 21 forces all the other vertices to
be 21. Thus, | Fix(A ) | = 21.

21

22 21

22

(c) Elements in Fix(A2). Coloring one
vertex 21 forces another to be 21. Col-
oring the third vertex 22 forces the re-
maining uncolored vertex to be 22 as
well. Thus, | Fix(A2) | = 22.

B

21

22 22

21

(d) Elements in Fix(B). For the square
to be fixed by B, only vertices on one
side of the reflection line can be colored
independently. Thus, | Fix(B) | = 22.

A B

21

22 21

23

(e) Elements in Fix(AB). For the square
to be fixed by AB, only three vertices
can be colored independently. Thus,
| Fix(AB) | = 23.

Fig. 14.3: Sketch-work for finding |Fix(6) | for representative elements 6 of the
conjugacy classes when the symmetry group includes rotations and reflections.

that we need to use the orbit counting theorem. Instead of only having 2 colors
to choose from, we modify our numbers for | Fix(6) | by replacing 2some power with
: that same power (convince yourself that this true). If we only consider rotations (by, for
example, thinking of square patterns on a tile) then the number of distinct tiles using
: colors is equal to the number of orbits which, by the orbit-counting theorem, is

#
Z4
>A1

=
1
4
(1 · :4 + 1 · :1 + 1 · :2 + 1 · :2)

=
1
4
(:4 + 2:2 + :). (14.9)

If we consider rotations and reflections (by, for example, thinking of a necklace with
four equispaced beads and each bead can be one of : colors) then the number of
distinct colors are
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#
�4
>A1

=
1
8
(1 · :4 + 2 · :1 + 1 · :2 + 2 · :2 + 2 · :3)

=
1
8
(:4 + 2:3 + 3:2 + 2:). (14.10)

Notice that the number of colorings differs if one considers only rotations (Z4) or
considers rotations and reflections (�4). This makes sense. The number of orbits
definitely depends on the symmetry group. For a square and for : = 2, we saw that
the situation was such that the two answers were the same. This, as we now see, is
usually not the case.

14.3 Applications of the Orbit-Counting Theorem

Counting the number of colorings of necklaces is nice and all, but there are also
more interesting applications of the orbit-counting theorem.

14.3.1 Chemistry

Consider a benzene molecule. See Figure 14.4.

Planar Hexagon

Bond Length 140 pm

140 pm

120°

Fig. 14.4: A couple of different ways one can imagine benzene. (From theWikipedia
page on benzene.)

Consider removing a hydrogen atom bonded to a carbon atom and replace it, with
say, a chlorine atom. This results in chlorobenzene. See Figure 14.5.
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Fig. 14.5: One of the hydrogen atoms of benzene is replaced with chlorine. This is
chlorobenzene.

Now suppose we also had bromine laying around. If one of benzene’s hydrogen
atoms were removed and replaced with bromine we would have Bromobenzene. See
Figure 14.6.

Fig. 14.6: One of the hydrogen atoms of benzene is replaced with bromine. This is
bromobenzene.

It should be clear that this problemmaps to a problemwhere one has a necklace of
evenly spaced beads and one can color the beads using : colors. If only hydrogen and
chlorine are allowed, this corresponds to having : = 2 colors to color the necklace.
If one has hydrogen, chlorine, and bromide then : = 3. One could then work out
the number of colorings of the necklace using the relevant : for the number of
allowed colors, and conclude that this is also the number of molecules one can get
that are derived from benzene. Of course, this assumes that all such possibilities
are chemically stable so this method can very well overestimate the number of such
possible molecules in any real-world setting. In sum, we see that Burnside’s lemma



14.3 Applications of the Orbit-Counting Theorem 145

can be used alongside very simple chemistry models to put a bound on the number
of derivatives of a given molecule.

Problems

14.1 Consider an equilateral triangle. Suppose that each edge is colored using a
color from : possible colors. How many colorings of the triangle are possible? Two
colorings are considered the same if they map to each other using rotations and/or
reflections.

14.2 Each edge of a cube can be painted by one of A colors.

a) How many different decorated cubes are possible?
b) How many different decorated cubes are possible if the cubes are colored red

and blue (so A = 2)?

14.3 Find the number of nonisomorphic graphs on six vertices. Here’s how. The
complete graph on = vertices, denoted  =, is the graph with = vertices where every
pair of vertices is joined by an edge. See Figure 14.7 for the graph  6.

Fig. 14.7:  6, a complete graph with 6 vertices.

To make an arbitrary graph Γ on = vertices, color the edges of  = with two colors:
black (for present) and white (for absent). Let Γ be the subgraph of  = where the
edges are present. (= acts on  = by permuting the vertices and permuting the edges
in the corresponding way. Two graphs are said to be isomorphic if and only if (=
carries one to the other. For comparison,  4, there are 11 nonisomorphic graphs on
four vertices. 11 is small enough that we can list them. See Figure 14.8.
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Fig. 14.8: Eleven nonisomorphic graphs with 4 vertices.

14.4 Let q : � → (- be an action of � on a set - of = elements. In coloring
problems with Burnside’s lemma, there tend to be two parts: figuring out the fixed-
point set of each 6 ∈ �, and figuring out how to color the fixed-point set. Pólya’s
theorem does the first part as one-time work, making it easier to solve the second
part for different coloring schemes.
Definition: Suppose the disjoint cycle decomposition of q6 has 91 1-cycles, 92 2-
cycles, · · · , and 9= =-cycles. (Thus, 1 91 + 2 92 + · · · = 9= = =.) Call ( 91, · · · , 9=) the
cycle index of 6 for q.
Definition: Introduce = indeterminates G1, · · · , G=. The polynomial

/ (q) = 1
|� |

∑
6∈�

G
91
1 G

92
2 · · · G

9=
=

(where ( 91, · · · , 9=) is the cycle index of 6) is the cycle index polynomial of q.

a) Let (4 act on {1, 2, 3, 4} as usual. Show that the cycle index polynomial is

1
24
(G6

1 + 6G2
1G2 + 3G2

2 + 8G1G3 + 6G4).

b) Let (4 act on the six faces of the cube by rotating the cube as usual. Show that
the cycle index polynomial is

1
24
(G6

1 + 3G2
1G

2
2 + 6G2

1G4 + 6G3
2 + 8G2

3).

c) Let (4 act on the twelve edges of the cube by rotating the cube as usual. Show
that the cycle index polynomial is

1
24
(G12

1 + 3G6
2 + 8G4

3 + 6G2
1G

5
2 + 6G3

4).

d) Prove Pólya’s theorem: If each of the = elements of - can be colored with A
different colors, then the number of inequivalent coloring for the action q is

/ (q) (A, A, · · · , A).

(In other words, substitute G1 = A , G2 = A , · · · , G= = A into / (q).)
e) Use Pólya’s theorem to solve Emily’s problem for any number A of colors.
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f) Use Pólya’s theorem to solve Problem 14.2.

14.5 Determine the number of different necklaces of 16 beads that can be made
using 13 white beads and 3 black beads. Two necklaces are considered the same if
one can be carried to the other by rotation or reflection. (Assume that necklaces are
perfectly circular and the beads are evenly distributed on the circle.)

14.6 Suppose students in Princeton Astrophysics invent a new card game, whose
rules we don’t concern ourselves with. The cards of the game have 11 circles each,
arranged with five-fold symmetry as in Figure 14.9.

Fig. 14.9: Pattern on the cards for Problem 14.6.

On each card, 3 circles will be colored orange, and the remaining 8 will be colored
black, in keeping with the color traditions of Princeton University. Two colorings
are considered the same if and only if one can be carried to the other by a rotation
or a reflection. How many different colorings are there?

14.7 Repeat Problem 14.6 but suppose that now we have 10 circles where 3 circles
will be colored orange, the remaining 7 will be colored black, and the pattern looks
as in Figure 14.10. (For the record: this is the Petersen graph (rather, an isomorphic
copy of it).)
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Fig. 14.10: Pattern on the cards for Problem 14.7.



Chapter 15
Pop Quiz on Part 1

Abstract In this chapter, we present a list of qualitative questions about the content
of Part 1 in order to help readers test their understanding of (what we consider) the
big takeaway ideas.

15.1 Important Questions on Part 1

• What is a group?
• What is a ring?
• What is a field?
• What does Cayley’s theorem state? (Can you recall/sketch the main idea(s) of
the proof?)

• What does Lagrange’s theorem state? (Can you recall/sketch the main idea(s) of
the proof?)

• What does Cauchy’s theorem state? (Can you recall/sketch the main idea(s) of
the proof?)

• What is a conjugacy class? Do you remember what the conjugacy classes of
�= are? (Remember, you need to consider = even and odd separately). What
are the conjugacy classes of &8? What are the conjugacy classes of (=? Are the
conjugacy classes of �= the same as that of (=?

• What is the orbit-counting theorem (often called Burnside’s lemma)? (Can you
recall/sketch the main idea(s) of the proof?)

If the reader is comfortable with these topics and is able to answer these questions,
then Part 2 should be tackle-able.
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Part II
Linear Representations of Finite Groups



Now that we have built up the necessary terminology and techniques, we can cover
representation theory.



Chapter 16
Introduction to Representation Theory

AbstractA group� can also act on vector spaces by linear maps. This is what linear
representation theory is all about.

16.1 Linear Representations

Definition 16.1 Let + be a vector space over the field C. �! (+) is the group of
all invertible linear maps + → + . If + has finite dimension = and we fix a basis
{e1, · · · , e=} in + , then linear maps represented with respect to this basis can be
written as = × = matrices and �! (+) � �!= (C).

In what follows, we will restrict ourselves to cases where + is finite dimensional
and often to the case where � is finite.

Definition 16.2 Let � be a group. A linear representation of � on + is a homomor-
phism d : � → �! (+). That is, d6 is an invertible linear map from + → + such
that d6dℎ = d6ℎ for ∀6, ℎ ∈ �. If dim+ = =, d is said to be a representation on
=-dimensions or of degree =.

Note: A quick comment about notationmight be appropriate. Notice that d : � →
�! (+) takes an element 6 ∈ � as input and "spits out" some element in �! (+).
That element in �! (+) can itself take in an input (a vector) and "spit out" another
vector. Thus, we could write expressions like

d(6) (v) = w (16.1)

where 6 ∈ � and v,w ∈ +. It is understood that what this really means is (d(6)) (v).
I’ve arbitrarily decided that I like writing d6 (v) or d6v more. Since we will often
(mostly?) deal with finite groups, it is possible to think of d6 as some =-by-= matrix
so that d6v looks like a matrix multiplying a column vector.
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154 16 Introduction to Representation Theory

Note: Some books, many of them physics books, define the dimension of the
representation d to be the dimension of the vector space+. They will then say things
like "d is an =-dimensional representation."

Note: Since d is a homomorphism, we automatically know that d4 = �=×= and
that d6−1 = (d6)−1 for ∀6 ∈ �. (See Theorem 4.1.)

Note: d is not required to be injective. If it is injective, d is called a faithful
representation.

So far, this might seem rather abstract. Since we will be dealing with cases where
dim+ = = < ∞, let us think of d6 for any 6 ∈ � as an =× = matrix for concreteness.
Therefore, a degree-= representation of a group � is just a way of associating to
each 6 ∈ � an = × = matrix, call it d6, in such a way that the matrices behave
somewhat similar to the elements of � under the binary operation of the group. For
any 6, ℎ ∈ � we have:

6 · ℎ = 6 · ℎ (· means the binary operation of �)
↓

d6 · dℎ = d6ℎ (· means matrix multiplication).
(16.2)

That is, the matrix that we associate to 6ℎ, namely d6ℎ , is equal to the product
of the matrices that we associate to d6 and dℎ individually, namely d6dℎ . We say
"the matrices behave somewhat similar..." because d is a homomorphism and not
necessarily an isomorphism. This means that d6 can be equal to dℎ even when 6 ≠ ℎ.

Example 16.1 Let � = (2 � Z2. Let us define d : � → �!2 (C) by

d4 =

[
1 0
0 1

]
and d (1 2) =

[
0 1
1 0

]
. (16.3)

This is clearly a representation of (2, although a bit plain.

Example 16.2 Let us construct a degree-3 representation d : (3 → �!3 (C). Let
{e1, e2, e3} be a basis for + . Let (3 act on these 3 basis vectors/objects in the "usual"
way. That is, think of (1 2) ∈ (3 as permuting objects 1 and 2 and (1 2 3) as sending
object 1 to object 2, object 2 to object 3, and object 3 to object 1. Let us construct
matrices that "act" on the basis in the same way that (3 acts on three objects. This
then defines d as follows:

d4 =


1 0 0
0 1 0
0 0 1

 , d (1 2) =


0 1 0
1 0 0
0 0 1

 , d (1 3) =


0 0 1
0 1 0
1 0 0

 ,
d (2 3) =


1 0 0
0 0 1
0 1 0

 , d (1 2 3) =


0 0 1
1 0 0
0 1 0

 , d (1 3 2) =


0 1 0
0 0 1
1 0 0

 ,
(16.4)

so that, by construction, d (1 2)e1 = e2, d (1 3 2)e2 = e1, and so on. Evidently, (by
construction, really) the matrices d6 will act on the basis elements {e1, e2, e3} in the
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same way that 6 acts on the set {1, 2, 3}. We know that (1 2 3) (1 2) = (1 3), so we
had better have that d (1 2 3) d (1 2) = d (1 3) . We leave it to the reader to verify that this
is indeed the case.

It should be clear that this method can be generalized for any finite group.

Definition 16.3 Let � be a finite group. Let � act on - = � (that is, let � act
on itself) by left translation. Denote this action by q : � → (� . Take a complex
vector space + with dim+ = |� |. Choose a basis of + whose elements are in 1-to-1
correspondence with the elements of �: e6 for ∀6 ∈ �. Define d : � → �! (+) by
d6 (eℎ) = eq6 (ℎ) = e6ℎ for ∀6, ℎ ∈ �. This gives d6 ∈ �! (+) since it maps a basis
into a basis (since left translation is bĳective). This representation of � is called the
regular representation of �. This is a degree-|� | representation of �.

It should also be clear that this can be generalized even further. (� can now be an
infinite group, though a lot of the theorems we prove in this chapter will be for finite
groups so let’s assume � is still a finite group. The set - must be finite, though,
since dim+ = |- | and we restrict ourselves to cases where dim+ < ∞.)

Definition 16.4 Let � be a finite group. Let � act on a finite set - with action
q : � → (- . Take a complex vector space + with dim+ = |- |. Choose a basis of +
whose elements are in 1-to-1 correspondence with the elements of -: eG for ∀G ∈ - .
Define d : � → �! (+) by d6 (eG) = eq6 (G) for ∀6 ∈ � and ∀G ∈ - . This gives
d6 ∈ �! (+) since it maps a basis into a basis (since q6 ∈ (- is bĳective). This
representation of � is called the permutation representation associated with - . This
is a degree-|- | representation of �.

Note: The regular representation is a special case of the permutation representa-
tion. The regular representation is the permutation representation where �, a finite
group, acts on itself by left translation.

Actually, we worked harder in Examples 16.1 and 16.2 than we needed to when
looking for a representation.

Example 16.3 Let � = (2 � Z2. Let us define d : � → �!1 (C) by

d4 = [1] and d (1 2) = [1] (16.5)

By [1], we mean a 1× 1 matrix whose entry is 1. Often people just write d4 = 1 and
d (1 2) = 1 without the [ ] where it is understood that d6 is thought of as a matrix,
not a scalar. This is allowed since �!1 (C) � C×. This is clearly a representation of
(2, although even plainer than Example 16.1.

Definition 16.5 Let � be a finite group and let dim+ = 1. Define d : � → �! (+)
by d6 = id for ∀6 ∈ � (id is the identity map id : + → +). This is called the
trivial representation or unit representation. If we think in terms of matrices, this is
d : � → �!1 (C) with d6 = [1] for ∀6 ∈ �, where [1] is the 1 × 1 identity matrix.
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Example 16.4 Any degree-1 representation is a homomorphism d : � → �! (+)
where + is a line (for example, + � C of dim 1, not 2). For ∀6 ∈ �, d6 acts on
+ by multiplying by a scalar 26 (the constant depends on the 6 ∈ �). Since d6 is
invertible (with inverse d−1

6 ) we must have 26 ≠ 0 for ∀6 ∈ �. More concretely, let
� be a cyclic group of order 3, with � = 〈6〉. Let d be any degree-1 representation.
Then d6 ∈ �!1 (C). But

1 = d4 = d63 = (d6)3 . (16.6)

Therefore (thinking of d6 ∈ �!1 (C) as a scalar), d6 is a 3-root of unity, so we have
d6 = 4

8q for some q ∈ R with 48q3 = 1. The unique solutions are d (:)6 = 42c8:/3

with : = 0, 1, . . . , 3 − 1. Once d (:)6 is chosen, d (:)
60

is fixed for all 0 since d (:)
60

=

(d (:)6 )0 = 42c8:0/3 . When : = 0, we recover the trivial representation, so this leaves
3 − 1 nontrivial degree-1 representations.

16.2 Unitary Representations

Definition 16.6 Let+ be a vector space with an inner product 〈 , 〉. A representation
d : � → �! (+) is said to be a unitary representation if

〈d6v, d6w〉 = 〈v,w〉

for any 6 ∈ � and any v,w ∈ +.

Recall that if+ is a vector space over C a Hermitian inner product, label it 〈v,w〉,
is a sesquilinear form on +. That is, it is linear in the first argument but conjugate
linear in the second argument.

Example 16.5 The standard Hermitian inner product on C= is

[v,w] =
=∑
:=1

E:F: . (16.7)

Theorem 16.1 Weyl’s Unitary Trick: Let � be a finite group. Let d : � → �! (+)
be a representation. There is a �-invariant Hermitian inner product on +; that is,
there is an inner product ( , ) such that

(d6v, d6w) = (v,w)

for ∀6 ∈ � and ∀v,w ∈ + .

Proof The trick is to use "averaging over �." Let 〈v,w〉 be any Hermitian inner
product on + . Define
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(v,w) = 1
|� |

∑
6∈�
〈d6v, d6w〉 (16.8)

for any v,w ∈ + . (Do you see why we restrict ourselves to finite groups?) This is

i) Linear in v.
ii) Conjugate linear in w.
iii) Positive-definite.
iv) �-invariant.

This is because

i) d6 is linear in v and 〈 , 〉 is linear in the first argument.
ii) d6 is linear in w and 〈 , 〉 is conjugate linear in the second argument.
iii) Positive-definite since (v, v) = 1

|� |
∑
6∈� 〈d6v, d6v〉 is a sum of positive-definite

terms (since 〈 , 〉 is positive definite).
iv) �-invariant because see Problem 16.1 and apply it, for any ℎ ∈ �, to

(dℎv, dℎw) = 1
|� |

∑
6∈�
〈dℎd6v, dℎd6w〉 (16.9)

=
1
|� |

∑
6∈�
〈dℎ6v, dℎ6w〉

=
1
|� |

∑
6∈�
〈d6v, d6w〉 (by Problem 16.1)

= (v,w)

for any v,w ∈ + . �

What is "Weyl’s Unitary Trick" for? Suppose that 〈 , 〉 is the standard Hermitian
inner product. Then

(dℎv, dℎw) = 1
|� |

∑
6∈�
〈dℎd6v, dℎd6w〉 (16.10)

=
1
|� |

∑
6∈�
(dℎd6v)) dℎd6w

=
1
|� |

∑
6∈�

v) d)6 d)ℎ dℎd6w

!
= (v,w)

=
1
|� |

∑
6∈�

v) d)6 d6w

for ∀ℎ ∈ � and ∀v,w ∈ + means d)
ℎ
dℎ = � for ∀ℎ ∈ �. This is the same as

dℎ
) dℎ = � for ∀ℎ ∈ �, which is indeed the equation for unitary matrices given
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in introductory courses in linear algebra (which implicitly often use the standard
Hermitian inner product).

In short, we can always choose a �-invariant Hermitian inner product on + and
d6 is a unitary matrix for any 6 ∈ �.

16.3 Linear Representations Have Character

Definition 16.7 Let � be an = × = matrix. The trace of �, denoted Tr(�), is the sum
of the diagonal entries of �.

Proposition 16.1 Tr(��) = Tr(��) for any = × = matrices �, �.

Proof

Tr(��) =
∑
8

(��)88 =
∑
8

∑
9

�8 9� 98 (16.11)

=
∑
9

∑
8

� 98�8 9 =
∑
9

(��) 9 9

= Tr(��).

�

Corollary 16.1 Let ( be an = × = invertible matrix. Then Tr(�) = Tr((�(−1).

Proof Tr((�(−1) = Tr(((�(−1)) = Tr((�(−1)() = Tr(�((−1()) = Tr(�). �

Definition 16.8 Let d : � → �! (+) be a representation. The character j of d is
defined as j(6) = Tr(d6) for ∀6 ∈ �.

Proposition 16.2 If d : � → �! (+) is a degree-= representation, then (bar indi-
cates complex conjugation. Also, = = dim+ holds by definition. It is written this way
to emphasize the relationship between characters and the dimension of the vector
space + .):

i) j(4) = = = dim+ .
ii) j(6−1) = j(6) for ∀6 ∈ �.
iii) j(ℎ6ℎ−1) = j(6) for ∀6, ℎ ∈ �.
iv) If � is a finite group, then j(6) is a sum of = = dim+ terms which are each
|6 |Cℎ roots of unity for ∀6 ∈ �.

v) If � is a finite group, then |j(6) | ≤ = = dim+ for ∀6 ∈ �, with equality if and
only if d6 = _�=×= for some _ ∈ C with |_ | = 1.

vi) If � is a finite group, then j(6) = j(4) = = = dim+ if and only if d6 = d4 =
�=×=. (That is, if and only if 6 ∈ ker d.)

Proof i) d4 = �=×= ⇒ j(4) = Tr(d4) = Tr(�=×=) = = = dim+.
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ii) Choose a �-invariant Hermitian inner product on +. Then d6 is unitary for any
6 ∈ �. This means that d)6 d6 = �, which means that d6 = (d)6 )−1 = ((d6)−1)) .

j(6) = Tr(d6) = Tr(d6) = Tr((d−1
6 )) ) = Tr((d6)−1) = Tr(d6−1 ) = j(6−1).

(16.12)

iii) j(ℎ6ℎ−1) = Tr(dℎ6ℎ−1 ) = Tr(dℎd6dℎ−1 ) = Tr(dℎd6d−1
ℎ
) = Tr(d6) = j(6) for

∀6, ℎ ∈ �.
iv) Fix 6 ∈ �. Choose a �-invariant Hermitian inner product on +. Then d6 is uni-

tary, so there exists a basis where d6 is diagonal. That is, d6 = diag[_1, · · · , _=] .
Since 6 |6 | = 4 (by definition of |6 |), then

�=×= = d4 = d
|6 |
6 = (d6) |6 | = diag[_ |6 |1 , · · · , _ |6 |= ] . (16.13)

Thus, _8 for 8 = 1, · · · , = is a |6 |Cℎ root of unity so

j(6) = Tr(d6) =
=∑
8=1

_8 (16.14)

is a sum of = |6 |Cℎ roots of unity.
v) This follows from the previous part along with repeated use of the triangle

inequality:

|j(6) | =
����� =∑
8=1

_8

����� ≤ =∑
8=1
|_8 | = = (16.15)

since |_8 | = 1 for 8 = 1, · · · , = since it is a root of unity. Equality holds if and
only if all the lambdas are equal _8 = _ for 8 = 1, · · · , = for some _ ∈ C with
|_ | = 1. In the case of equality, d6 = diag[_, · · · , _] = _�=×=.

vi) ⇐ If d6 = �=×= then clearly j(6) = = = j(4).
⇒ If j(6) = j(4) = =, then |j(6) | = = so, by the work in the previous parts,
d6 = _�=×= for some _ ∈ C with |_ | = 1. Then

j(6) = Tr(_�=×=) = _=
!
= = (16.16)

implies _ = 1, so d6 = �=×=. �

Note: A (conjugacy) class function on a finite group ( is a function that takes a
constant value on each element in a given conjugacy class. Thus, Proposition 16.2
says that the character j of a representation d : � → �! (+) is a class function.

Why is j called the character of a group? We will see later that the character j
characterizes the representation, in the sense that it allows us to distinguish between
equivalent and nonequivalent (irreducible, to be defined later) representations. In-
deed, we will see later that characters are an orthonormal basis for the space of class
functions on �.
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16.3.1 Character of the Regular Representation

Choose a basis of+ whose elements are in 1-to-1 correspondencewith the elements of
a finite group�: e6 for∀6 ∈ �. The regular representation is defined by d6 (eℎ) = e6ℎ
for ∀6, ℎ ∈ �. If 6 ≠ 4, then e6ℎ ≠ eℎ (since 6ℎ = ℎ ⇒ 6 = 4). Therefore,
all the diagonal entries of d6 are 0 for 6 ≠ 4. If 6 = 4, then d6 = �=×=, where
= = dim+ = |� | since d4eℎ = e4ℎ = eℎ for any ℎ ∈ �. Therefore, Tr(d6) = 0 if
6 ≠ 4 and Tr(d6) = = = |� | for 6 = 4. Let’s collect this work into a proposition.

Proposition 16.3 Let� be a finite group and let jA46 be the character of the regular
representation of �. Then

jA46 (6) =
{
|� |, if 6 = 4,
0, if 6 ≠ 4.

16.4 Equivalent Representations

We want to be able to quantify how many representations a group has. One aspect of
this is deciding how to count different representations. Again, let us think of our rep-
resentations as matrices for concreteness. Let d : � → �!= (C) be a representation
and d′ : � → �!= (C) be a representation. Suppose there exists an invertible matrix
( such that d′6 = (d6(−1 for every 6 ∈ �. (Note: It is the same ( for every 6 ∈ �.)
Recall from linear algebra that this means that d′6 and d6 are really the same linear
maps just written in different bases, and the matrix ( relates the two bases. We agree
to not really count d′ as a new representation. Why not, you may ask? Well, suppose
that we worked really hard to find a degree-= representation d6 : � → �!= (C)
and then someone comes along, picks any invertible = × = matrix (, and defines
d′ : � → �!= (C) as d′6 = (d6(−1 for ∀6 ∈ �. Then d′6 is a representation as well
since

d′6d
′
ℎ = ((d6(

−1) ((dℎ(−1) = (d6dℎ(−1 = (d6ℎ(
−1 = d′6ℎ . (16.17)

This seems like a really cheap way to get a "new" representation from an existing
one. Let’s not count this as new.

How does one determine whether two given representations d and d′ are equiv-
alent? It seems tedious to look for an invertible matrix ( such that d′6 = (d6(−1 for
∀6 ∈ �. For some intuition, suppose that there exists such an invertible matrix (.
Then

j′(6) = Tr(d′6) = Tr((d6(−1) = Tr(d6) = j(6). (16.18)

From this we conclude that if there ∃G ∈ � such that j′(G) ≠ j(G) then the two
representations d′ and d are not equivalent. But what if j′(G) = j(G) for ∀G ∈ �?
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We will see later that their characters are the same if and only if they are "the
same"/isomorphic/equivalent representations. Let’s start to formalize these notions.
Definition 16.9 A map of representations from d to d′ (also called a �-linear map,
or �-map, or intertwining operator) is a linear map g : + → + ′ such that we have
the commutative diagram

+ +

+ ′ + ′

d6

g g

d′6

for any 6 ∈ �. That is, d′6 ◦ g = g ◦ d6 for ∀6 ∈ �. (Note: It is the same g for every
6 ∈ �.)
Proposition 16.4 If g from d to d′ is a �-linear isomorphism then g−1 is also a
�-linear map.

Proof Wewant to show that for the linear map g−1 : + ′→ + we have a commutative
diagram

+ +

+ ′ + ′

d6

g−1

d′6

g−1

for ∀6 ∈ �. This commutative diagram holds since

d′6 ◦ g = g ◦ d6 (16.19)

g−1 ◦ d′6 ◦ g ◦ g−1 = g−1 ◦ g ◦ d6 ◦ g−1

g−1 ◦ d′6 = d6 ◦ g−1.

�

Corollary 16.2 Isomorphism of representations is an equivalence relation. That is,
the following commutative diagram holds:

+ +

+ ′ + ′

+ ′′ + ′′

d6

g g

d′6

g′ g′

d′′6

for any 6 ∈ �.
Loosely and informally speaking, the path taken doesn’tmatter for the "top" square

and "bottom" square individually, so from this you can conclude that it doesn’t matter
what path one takes when the two squares are stacked together.
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Definition 16.10 Let � be a finite group and let +,+ ′ be finite-dimensional vector
spaces. Let d : � → �! (+) and d′ : � → �! (+ ′) be representations. We say that
the representations d and d′ are isomorphic or equivalent if there exists a �-linear
map g : + → + ′ which "transforms" d to d′, in the sense of Definition 16.9, and
where g is also an isomorphism (a bĳective function) + � + ′. If there is no such g,
we say that d and d′ are nonisomorphic or inequivalent.

ImportantClarifyingNote:Whenwe say "where g is also an isomorphism+ � + ′"
we mean in the sense of vector spaces + � + ′ and not in the sense of groups where
homomorphism in the group element argument is required (such as d6dℎ = d6ℎ).
Isomorphism of two vector spaces means there exists a linear bĳection between the
spaces. The same word "isomorphism" is used but stipulates different constraints
on the function. Do not let this confuse you. If you read that a function is an
"isomorphism," ask yourself if the input to the function is an element of a group or
an element of a vector space to figure out which version of isomorphism is meant.

Note: This more abstract definition in terms of �! (+) and linear maps is just a
formal definition of what we have already mentioned before. If we think in terms of
matrices, then g in this definition is the invertible matrix ( considered before.

Proposition 16.5 Let d : � → �! (+) and d′ : � → �! (+ ′) be isomorphic
representations of the group �. Let j be the character of d and let j′ be the
character of d′. Then j = j′. That is, j(6) = j′(6) for any 6 ∈ �.

Proof Since d and d′ are isomorphic, there exists a bĳective �-linear map g (con-
sider it as a matrix) from + to + ′ such that d′6g = gd6 for every 6 ∈ �. This is the
same as d6 = g−1d′6g for every 6 ∈ �. Therefore,

j(6) = Tr(d6) = Tr(g−1d′6g) = Tr(d′6) = j′(6) (16.20)

for every 6 ∈ �. �

Proposition 16.6 The 3 degree-1 representations in Example 16.4 are mutually
nonisomorphic.

Proof Assume the contrary. Choose < ≠ = and assume there exists an isomorphic
�-map g : C → C (strictly speaking, g : �!1 (C) → �!1 (C)). In one dimension,
we can think of g as acting by some scalar 2 (strictly speaking, a 1 × 1 matrix). The
commutative diagram says

242c8</3 = 42c8=/32 ⇒ 42c8 (<−=)/3 = 1. (16.21)

We may divide by 2 since g = 0 satisfies the commutative diagram but that is not
what we are seeking. We seek solutions with 2 ≠ 0 since g = 0 is not invertible and
hence not an isomorphic�-map. This then requires< = = since<, = are restricted to
{0, 1, ..., 3−1}. A contradiction. Thus, there is no g an isomorphism that satisfies the
commutative diagram so the 3 degree-1 representations are mutually not similar. �
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Thus, we have found 3 (distinct) degree-1 representations for cyclic groups of
order 3. We will see later that these are the only irreducible (think for now "smallest
distinct") representations of cyclic groups of order 3.

16.5 Character Tables

Now seems as good of a time as any to introduce character tables. Consider the group
Z3 = 〈G〉. By Proposition 16.6, we have three distinct degree-1 representations for
Z3 given by (where l = 42c8/3):

d
(1)
4 = 1 d (1)G = 1 d

(1)
G2 = 1

d
(2)
4 = 1 d (2)G = l d

(2)
G2 = l

2

d
(3)
4 = 1 d (3)G = l2 d

(3)
G2 = l.

(16.22)

The characters for these are easy to calculate: the trace of a 1 × 1 matrix is the entry
of that matrix! See Table 16.1.

Table 16.1: Character table of Z3 = 〈G〉.

size 1 1 1
class 4 G G2

j (1) 1 1 1
j (2) 1 l l2

j (3) 1 l2 l

At the very top row, we list the sizes of the (distinct) conjugacy classes. The
second row gives a representative element in the (distinct) conjugacy classes. Then
the rows for j (:) with : = 1, 2, 3 label the characters of the representations d (:)
with : = 1, 2, 3, respectively. We only list the character of one element from each
conjugacy class because Proposition 16.2 tells us that elements in the same conjugacy
class have the same character. We often list the size of the conjugacy class in the
first row because it will of use during calculations of inner products on characters
(to be discussed later, in particular in Theorem 16.9). The examples and problems
will have the reader work out character tables of a number of groups introduced in
Part I.
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16.6 Direct Sums

Definition 16.11 Let+ be a vector space with+ ≠ {0}. Let,1 and,2 be subspaces
of + . We say that + is a direct sum of ,1 and ,2 and write + = ,1 ⊕,2 if every
v ∈ + can be written uniquely as v = w1 + w2 with w1 ∈ ,1 and w2 ∈ ,2.

Proposition 16.7 + = ,1 ⊕,2 if and only if:

i) ,1 ∩,2 = {0}
ii) ,1 and,2 span + .

Proof ⇐ Suppose ,1,,2 are subspaces of + satisfies conditions i) and ii). Take
any v ∈ +. Since,1 and,2 span + , there exists some w1 ∈ ,1 and w2 ∈ ,2 such
that v = w1 +w2. Suppose v is also equal to v = w′1 +w′2. Then w1 +w2 = w′1 +w′2,
which means that w1 − w′1 = w′2 − w2. But w1 − w′1 ∈ ,1 and w′2 − w2 ∈ ,2, so
by i) we conclude that w1 − w′1 = 0 and w′2 − w2 = 0. Therefore, the expression
v = w1 + w2 with w1 ∈ ,1 and w2 ∈ ,2 is unique.
⇒ Suppose + = ,1 ⊕,2. Then every v ∈ + can be written uniquely as v = w1 +w2
with w1 ∈ ,1 and w2 ∈ ,2. In particular, this means that ,1 and ,2 span +.
The uniqueness requirement then means that ,1 ∩,2 = {0}. Why? Suppose that
u ∈ ,1 ∩ ,2 with u ≠ 0. Then v = w1 + w2 = (w1 + u) + (w2 − u). However,
w1 ≠ w1 + u and w2 ≠ w2 − u. This contradicts that v = w1 +w2 with w1 ∈ ,1 and
w2 ∈ ,2 is unique. �

Definition 16.12 Let d (1) : � → �! (+1) be a linear representation of � and let
d (2) : � → �! (+2) be a linear representation of �. Define the representation
d (1) ⊕ d (2) : � → �! (+1 ⊕ +2) by

(d (1) ⊕ d (2) )6 = d (1)6 ⊕ d (2)6

for any 6 ∈ �. By this, we mean

(d (1) ⊕ d (2) )6 (v1, v2) = (d (1)6 v1, d
(2)
6 v2) ∈ +1 ⊕ +2

for any (v1, v2) ∈ +1 ⊕ +2.We call this the direct sum of the representation d (1) and
d (2) .

What does the above definition look like in terms of matrices? Let =1 = dim+1
and =2 = dim+2. It means that there exists some ordered basis where the first =1
basis vectors span the subspace +1 and the next =2 basis vectors span the subspace
+2 such that

d6 =

+1 +2[ ]
d
(1)
6 0 +1

0 d
(2)
6 +2

(16.23)
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in that basis. This is often written as d6 = d (1)6 ⊕ d (2)6 since the matrix d6, in some
suitably chosen basis, looks like the matrices d (1)6 and d (2)6 stacked together along
the "diagonal." Formally, d6 is a block diagonal matrix. Also, the 0 (the "big zero")
in the matrix carries multiple meanings. In the upper right, 0 means that you have a
dim+1 by dim+2 rectangular (square only if dim+1 = dim+2) block of zeros. In the
lower left block, 0 means you have a dim+2 by dim+1 rectangular (square only if
dim+1 = dim+2) block of zeros.

Example 16.6 Define the representations d (1) : Z= → �!1 (C) as d (1)< = 42c8</=

and d (2) : /= → �!1 (C) as d (2)< = 4−2c8</=. Then d (1) ⊕ d (2) : Z= → �!2 (C) is
given by

(d (1) ⊕ d (2) )< =
[
42c8</= 0

0 4−2c8</=

]
. (16.24)

This gives a way of making "new" representations by "stacking" old ones together.
This raises a question/idea. Here, we are given two representations andwe stack them.
Is the converse possible? That is, suppose we are given a representation. Can the
given representation be written as a direct sum of some "smaller" representations?
This leads to the ideas of reducible/irreducible and decomposable/indecomposable
representations.

16.7 Indecomposable and Irreducible Representations

Definition 16.13 Let d : � → �! (+) be a representation. A subspace , ⊆ + is
called �-stable or G-invariant if d6, ⊆ , for ∀6 ∈ �. That is, if w ∈ , then
d6w ∈ , for ∀6 ∈ �. If , is finite-dimensional then, since d6 is invertible, being
�-stable means d6, = , for ∀6 ∈ �. If, is �-stable, then d6 carries, into, as
a linear map. This defines a representation d, : � → �! (,) called the restriction
of d from + to, . We say that, is a subrepresentation of + .

Example 16.7 Let � = (3. Let + = R3. Let {e1, e2, e3} be the standard basis of
R3. Let � act on the basis by permutation. This gives a permutation representation
d : � → �!3 (R). But the vector e1 + e2 + e3 and any scalar multiple of this vector is
fixed by the action. For example, (1 2) ∈ (3 sends e1 + e2 + e3 to e2 + e1 + e3, which
is obviously the same vector. Thus the whole line , = {2(e1 + e2 + e3) | 2 ∈ R}
is a �-stable subspace of + = R3. Let 〈 , 〉 be the standard inner product given by
〈x, y〉 = ∑3

:=1 G: H: . This is also preserved by the action. Again, for example, (1 2)
sends 〈x, y〉 = G1H1 + G2H2 + G3H3 to G2H2 + G1H1 + G3H3 = 〈x, y〉. Thus, the plane,⊥
perpendicular to , must also be �-stable. ,⊥ = {(G, H, I) | G + H + I = 0} since
e1 + e2 + e3 is perpendicular to the plane. Orthogonally project e1, e2, e3 onto the
plane, obtaining f1, f2, f3. To do this projection, subtract an appropriate multiple of
e1 + e2 + e3 until each e8 for 8 = 1, 2, 3 lands in the plane,⊥. Verify that the correct
multiple is 1/3.
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f1 =


1
0
0

4 −

1/3
1/3
1/3

4 =


2/3
−1/3
−1/3

4 (16.25)

f2 =


0
1
0

4 −

1/3
1/3
1/3

4 =

−1/3
2/3
−1/3

4 (16.26)

f3 =


0
0
1

4 −

1/3
1/3
1/3

4 =

−1/3
−1/3
2/3

4 (16.27)

The reader should verify that 〈f8 , f 9〉 = −1/3 for 8 ≠ 9 and 〈f8 , f8〉 = 2/3 for 8 = 1, 2, 3.
Take {f1, f2} as a basis of,⊥, and call it the " 5 " basis. Verify that f1 + f2 + f3 = 0,
so f3 = −f1 − f2. In matrix notation, we have:

f1 =

[
1
0

]
5

f2 =

[
0
1

]
5

f3 =

[
−1
−1

]
5

. (16.28)

How does d (1 2) act on,⊥ using the 5 -basis? (1 2) interchanges f1 and f2 but leaves
f3 fixed. What about d (1 2 3)? (1 2 3) sends f1 to f2 and f2 to f3 = −f1 − f2. Therefore,

d,
⊥

(1 2) =

[
0 1
1 0

]
5

, d,
⊥

(1 2 3) =

[
0 −1
1 −1

]
5

. (16.29)

Work out the rest in Problem 16.16. (Recall that (1 2) and (1 2 3) generate (3. See
Theorem 3.10.)

Definition 16.14 Let d : � → �! (+) be a representation. We say d is irreducible
if + has no �-stable subspace besides {0} and + . This means that there is only one
way to write + as a direct sum of �-stable subspaces: + = + ⊕ {0}.

Remark: Any degree-1 representation of a group � is clearly an irreducible
representation.

Remark: A common nickname for an irreducible representation is irrep. Instead of
saying "consider a degree-2 irreducible representation of..." you could say "consider
a degree-2 irrep of..." Of course, there is also the plural form "irreps."

Definition 16.15 If a representation is not irreducible, we say that it is reducible.

Definition 16.16 Let � be a group and let d : � → �! (+) be a representation of
�. The representation d is said to be completely reducible if+ = +1 ⊕ · · · ⊕+: where
+8 is a �-stable subspace and d+8 is irreducible for each 8 = 1, · · · , : .

Definition 16.17 Let d : � → �! (+) be a representation. We say d is decompos-
able if we can write + = +1 ⊕+2 where +1, +2 are �-stable subspaces with +1 ≠ {0}
and +2 ≠ {0}.

Definition 16.18 Let d : � → �! (+) be a representation. We say d is indecom-
posable if it is not decomposable.
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Why all these terms? These are two different notions, and irreducibility is the
finer notion. Theorem 16.4 makes this statement more precise. We will show now
that for finite groups �, every representation of � on a finite-dimensional complex
vector space + that is indecomposable is irreducible. The representation theory of
finite groups � over C is completely reducible.

Theorem 16.2 Let d : � → �! (+) be a unitary representation of the group �.
Then d is either irreducible or decomposable.

Proof If d is irreducible then d is obviously either irreducible or decomposable.
Suppose that d is reducible. This means that there is a �-stable subspace , ⊆ +.
Its orthogonal complement ,⊥ is then also nonzero and + = , ⊕,⊥. Looking at
Definition 16.17, we see that if we can show that , and ,⊥ are �-stable, then d
is decomposable., in �-stable by assumption. Therefore, let us consider,⊥. Let
w ∈ , and w⊥ ∈ ,⊥ be arbitrary. Then, for any 6 ∈ �,

(d6w⊥,w) = (d6−1d6w⊥, d6−1w) (16.30)
= (w⊥, d6−1w)
= 0.

The first equality follows from the unitarity of d (so (dℎv1, dℎv2) = (v1, v2) for any
v1, v2 ∈ + and any ℎ ∈ �), the second because , is �-stable so d6−1w ∈ , and
hence (w⊥, d6−1w) = 0. Therefore, d6w⊥ ∈ ,⊥ for any 6 ∈ � and any w⊥ ∈ ,⊥.
Therefore, d is decomposable. �

Theorem 16.3 Let � be a finite group and let d : � → �! (+) be a representation
of �. Then d is either irreducible or decomposable.

Proof Since� is finite, Theorem 16.1 and the comments after it let us conclude that
we can, WLOG, consider d6 as unitary matrices for all 6 ∈ �. (More formally, there
is a change of basis matrix g such that d′6 = gd6g−1 is unitary for any 6 ∈ �. We
are saying that suppose from the start we are in the basis where d is unitary and no
change of basis to an equivalent representation is needed.) Theorem 16.2 then tells
us that d is either irreducible or decomposable. �

Let us build some intuition by thinking in terms of matrices and not abstract linear
maps between vector spaces. Let � be a group and let + be a vector space over C
with dim+ = =. Let d : � → �! (+) � �!= (C) be a representation. The matrices
d6 for 6 ∈ � will, in some generic basis, be some = × = matrix:

d6 =


(d6)1,1 (d6)1,2 · · · (d6)1,=
(d6)2,1 (d6)2,2 · · · (d6)2,=
...

...
. . .

...

(d6)=,1 (d6)=,2 · · · (d6)=,=


(16.31)

where in principle all the entries could be nonzero. Suppose that + has two and only
two �-invariant subspaces, call them +1 and +2 with dim+1 = =1, dim+2 = =2 and
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= = =1 + =2 with 0 < =1, =2 < =. Suppose that + = +1 ⊕ +2. This means that there
exists some ordered basis where the first =1 basis vectors span the subspace +1 and
the next =2 basis vectors span the subspace +2 such that

d6 =

+1 +2[ ]
d
(1)
6 0 +1

0 d
(2)
6 +2

(16.32)

in that basis. This is sometimes written as d6 = d (1)6 ⊕ d (2)6 since the matrix d6, in
some suitably chosen basis, looks like the matrices d (1)6 and d (2)6 stacked together
along the "diagonal." Formally, d6 is a block diagonal matrix. Also, the 0 (the "big
zero") in the matrix carries multiple meanings. In the upper right, 0 means that you
have a dim+1 by dim+2 rectangular (square only if dim+1 = dim+2) block of zeros.
In the lower left block, 0 means you have a dim+2 by dim+1 rectangular (square
only if dim+1 = dim+2) block of zeros.

If d : � → �! (+) is irreducible, it means that no matter how hard we try, we
will not be able to find a basis where d6 for ∀6 ∈ � can be written as smaller
matrices stacked together. That is, if d : � → �! (+) � �!= (C) is an irreducible
representation and, in general, d6 is as in Equation 16.31 for the basis we are working
in, then there exists no invertiblematrix ( such that (d6(−1 has the form of thematrix
in Equation 16.32 for ∀6 ∈ �. In some sense, d6 is already written as "small" as it
can be for all 6 ∈ �. It is irreducible.

Theorem 16.4 (Maschke’s Theorem) - Let � be a finite group. Any representation
of � on a finite-dimensional complex vector space is completely reducible. That is,
every representation of a finite group is a direct sum of irreducible representations.

Proof Let � be a finite group and let d : � → �! (+) be a representation of �.We
proceed by induction on dim+. If dim+ = 1, then d is obviously irreducible. Suppose
the theorem is true for dim+ ≤ =. Let d : � → �! (+) be a representation where
dim+ = = + 1. If d is irreducible, there is nothing to prove. Suppose d is reducible.
By Theorem 16.3, d is decomposable so + = +1 ⊕ +2 where +1 ≠ {0} and +2 ≠ {0}
and +1, +2 are �-stable. Since dim+1, dim+2 ≤ = we conclude that d+1 and d+2 are
completely reducible by our induction hypothesis. Therefore, +1 = �1 ⊕ · · · ⊕ �:1

and +2 = �1 ⊕ · · · ⊕ �:2 where �8 , � 9 are �-stable and d�8 , d� 9 are irreducible for
1 ≤ 8 ≤ :1, 1 ≤ 9 ≤ :2.Then+ = �1⊕· · ·⊕�:1⊕�1⊕· · ·⊕�:2 , so the representation
d can indeed be written as a direct sum of irreducible representations. �

The theorem above is extremely important for finite groups. What it means is that
we can focus all of our attention on understanding the irreducible representations
when dealing with finite groups, since any other representation will be a direct sum
of the irreducible representations.

Note: If = > 1, then the representation d : � → �!= (C) given by d6 = �=×= for
all 6 ∈ � is not the trivial representation. It is equivalent to a direct sum of = copies
of the trivial representation.
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Example 16.8 Let � = (R, +, 0). � is not a finite group. There is a degree-2 repre-
sentation d : � → �!2 (R) defined by

dD =

[
1 D
0 1

]
. (16.33)

This is a homomorphism since

dDdE =

[
1 D
0 1

] [
1 E
0 1

]
=

[
1 D + E
0 1

]
= dD+E . (16.34)

This representation is sometimes called horizontal shears. Why the name? Con-
sider points along the G = 1 axis. Any point (0, 1) gets mapped by d1 to (0 + 1, 1),
(0, 2) gets mapped to (0 + 21, 2), and (0, 3) gets mapped to (0 + 31, 3), etc.

Fig. 16.1: Horizontal shears. The vertical dots each get mapped sideways by a
different amount.

What are the �-stable subspaces? Convince yourself that only the G-axis is �-
stable. That is, only the subspace Re1 is �-stable. Any other line through the origin
will not get mapped into itself but will instead, due to the shearing action of d,
be rotated around into some other line through the origin. Therefore, R2 cannot be
written as a direct sum of two one-dimensional subspaces which are both �-stable.
Thus, � is not irreducible (since the G-axis is �-stable) but it is indecomposable.

Note: The above was over the real scalars so that an intuitive picture could be
drawn. The same conclusion applies if we consider it over C. Then Ce1 is �-stable
and no other line through the origin is �-stable, so d : � → �!2 (C) is not
irreducible but it is indecomposable. The whole point of this example is that � is
not finite here so the theorems we just proved are not applicable.

Note: An irreducible representation is indecomposable. The horizontal shears
example above, however, shows that it is possible to be indecomposable but not
irreducible.
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16.7.1 Determining If Degree-2 and Degree-3 Representations Are
Irreducible

In Theorem 16.11, we will show a way to determine if a representation (of any finite
degree) is irreducible. However, for a degree-2 or degree-3 representation, one can
determine if a representation is irreducible by solving for eigenvectors of d6 for each
6 ∈ �. Of course, this method is only convenient/practical to do by hand if � has a
small number of generators.

Theorem 16.5 Let � be a finite group and let d : � → �! (+) be a degree-2
representation. Then d is irreducible if and only if there does not exist a common
eigenvector for d6 for all 6 ∈ �. (Actually, one only needs to consider the generators
of �.)

Proof If dim+ = 2, then any nonzero proper �-invariant subspace W (that is,
{0} $ , $ +) must be one-dimensional. Pick any nonzero vector w ∈ ,. Then
, = Cw. If , is �-stable, we have d6w = _6w for every 6 ∈ �. The subscript
on _6 is there because the proportionality constant (the eigenvalue, actually) is not
necessarily the same for all 6 ∈ �. It follows that w is an eigenvector for all 6 ∈ �.
The other direction is similar. Suppose there exists a vectorw ∈ + such that d6 = _6w
for all 6 ∈ �. Then, = Cw is a nonzero proper �-stable subspace of + and, hence,
d is reducible. �

Example 16.9 Consider d : �4 → �!2 (C) defined by

d(A: ) =
[
8: 0
0 (−8):

]
, d(BA: ) =

[
0 (−8):
8: 0

]
.

Here, A is counterclockwise rotation by c/2 while B is reflection over the G-axis.
Then e1 and e2 are clearly eigenvectors of d(A: ) but not d(BA: ). Thus, this degree-2
representation of �4 is irreducible.

Theorem 16.6 Let � be a finite group and let d : � → �! (+) be a degree-3
representation. Then d is irreducible if and only if there does not exist a common
eigenvector for d6 for all 6 ∈ �. (Actually, one only needs to consider the generators
of �.)

Proof Left to reader. �

16.8 New Representations From Old Ones - Tensor Products

Idea: Once we have a representation, we can create new ones (often not irreducible
representations, but representations nonetheless) from the existing one.
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Definition 16.19 Let +1, +2 be finite dimensional vector spaces over C. Let {e1, · · · ,
e<} be a basis of +1 and {f1, · · · , f=} be a basis for +2. Then the tensor product
+1 ⊗ +2 or +1 ⊗C +2 is a complex vector space whose basis consists of the formal
< ·= symbols e8 ⊗ f 9 for 8 = 1, · · · , < and 9 = 1, · · · , =. The tensor product is bilinear
in the sense that

(
<∑
8=1

08e8) ⊗ (
=∑
9=1

1 9 f 9 ) =
<∑
8=1

=∑
9=1
081 9e8 ⊗ f 9 .

1. Distributive: v1 ⊗ (w1 + w2) = v1 ⊗ w1 + v1 ⊗ w2
2. Distributive: (v1 + v2) ⊗ w1 = v1 ⊗ w1 + v2 ⊗ w1
3. Associative: (v1 ⊗ v2) ⊗ v3 = v1 ⊗ (v2 ⊗ v3)

where the vectors are arbitrary vectors from their respective vectors spaces. They are
not however commutative. That is, v ⊗ w ≠ w ⊗ v in general. Things do, however,
commute with the scalars: _(v ⊗ w) = (_v) ⊗ w = v ⊗ (_w).

Example 16.10 If < = 2 and = = 2 then

(4e1 + 3e2) ⊗ (2f1 + 5f2) = 8e1 ⊗ f1 + 20e1 ⊗ f2 + 6e2 ⊗ f1 + 15e2 ⊗ f2. (16.35)

Definition 16.20 Let � be a finite group. Let d (1) : � → �! (+1) and d (2) : � →
�! (+2) be representations. Let us define a representation d (⊗) : � → �! (+1 ⊗+2)
by

d
(⊗)
6 (v1 ⊗ v2) = (d (1)6 (v1)) ⊗ (d (2)6 (v2))

for ∀v1 ∈ +1,∀v2 ∈ +2, and ∀6 ∈ �. We will sometimes write d (⊗) = d (1) ⊗ d (2) .
Then the previous equation becomes

(d (1)6 ⊗ d (2)6 ) (v1 ⊗ v2) = (d (1)6 (v1)) ⊗ (d (2)6 (v2)).

We can think of the new representation d (⊗) = d (1) ⊗ d (2) as having a d (1) part and
a d (2) part in such a way that when d (⊗)6 acts on v1 ⊗ v2, the respective parts of d (⊗)

only "see" and act on their respective vectors. We say that d (⊗) is a tensor product
of the given representations.

Let v1 =
∑<
8=1 08e8 and v2 =

∑=
9=1 1 9 f 9 . Then

d
(1)
6 (v1) =

∑<
8=1 08d

(1)
6 (e8) =

∑<
8,:=1 08

(
d
(1)
6

)
:8

e:

d
(2)
6 (v2) =

∑=
9=1 1 9 d

(2)
6 (f 9 ) =

∑=
9,;=1 1 9

(
d
(2)
6

)
; 9

f;
(16.36)

Therefore,
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d
(⊗)
6 (v1 ⊗ v2) = (d (1)6 ⊗ d (2)6 ) (v1 ⊗ v2) (16.37)

= (d (1)6 (v1)) ⊗ (d (2)6 (v2))

= (
<∑

8,:=1
08

(
d
(1)
6

)
:8

e: ) ⊗ (
=∑
9 ,;=1

1 9

(
d
(2)
6

)
; 9

f;)

=

<∑
8,:=1

=∑
9 ,;=1

081 9

(
d
(1)
6

)
:8

(
d
(2)
6

)
; 9

e: ⊗ f; .

Consider the case when v1 = e0 and v2 = f1 . Then this gives

d
(⊗)
6 (e0 ⊗ f1) = (d (1)6 ⊗ d (2)6 ) (e0 ⊗ f1) (16.38)

=

<∑
:=1

=∑
;=1

(
d
(1)
6

)
:0

(
d
(2)
6

)
;1

e: ⊗ f; .

Thus, we see that we can think of the direct-product matrix as satisfying(
(d (1)6 ⊗ d (2)6 )

)
:;,01

=

(
d
(1)
6

)
:0

(
d
(2)
6

)
;1

(16.39)

where the columns and rows are indexed by pairs of indices. Therefore, we see again
that dim+1 ⊗ +2 = dim+1 · dim+2 since that is the number of independent values
for the pair of indices. The trace is defined as the sum of the diagonal elements.
Therefore,

Tr(d (1)6 ⊗ d (2)6 ) =
<∑
:=1

=∑
;=1

(
(d (1)6 ⊗ d (2)6 )

)
:;,:;

(16.40)

=

<∑
:=1

=∑
;=1

(
d
(1)
6

)
::

(
d
(2)
6

)
;;

= Tr(d (1)6 ) Tr(d (2)6 ).

We have just proved that j (⊗) (6) = j (1) (6)j (2) (6). That is, the character of the
direct product representation can be calculated from the characters of the "original"
representations simply by multiplying the characters.

16.8.1 Symmetric Square and Alternating Square

Let us consider the case when the two vector spaces are the same+1 = +2. Relabel the
vector space and call it+ ≡ +1. Also, consider d (1) = d (2) .Relabel the representation
d. That is, d (⊗)6 = d6 ⊗ d6 for all 6 ∈ �. Let us use {e1, · · · , e=} as our basis (so
dim+ = =).
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Definition 16.21 The symmetric square of + , denoted Sym(2) (+), is the subspace
of + ⊗ + where all tensors are symmetric under the map \ : e8 ⊗ e 9 ↦→ e 9 ⊗ e8 .

Definition 16.22 The alternating square of + , denoted Alt(2) (+), is the subspace of
+ ⊗ + where all tensors are skew-symmetric under the map \ : e8 ⊗ e 9 ↦→ e 9 ⊗ e8 .
That is, they are invariant under e8 ⊗ e 9 ↦→ −e 9 ⊗ e8 .

Comment: Many books write Alt(2) (+) as ∧2+. However, there is no standard
"fancy" symbol/notation for Sym. Maybe this reflects the fact that skew-symmetry
appears more often in math concepts than symmetry. Think about how many for-
mulas you know that involve the determinant compared to the permanent. (Both are
important in physics. Think of fermions and bosons.)

In other words, we define an automorphism \ of + ⊗ + by \ (e8 ⊗ e 9 ) = e 9 ⊗ e8 .
This \ satisfies \2 = 1, so the eigenvectors of this linear map \ on + ⊗ + have
eigenvalue 1 or −1. Sym(2) (+) is the eigenspace for eigenvalue 1 while Alt(2) (+) is
the eigenspace for the eigenvalue −1. These eigenspaces span + ⊗ + and we have,
as we will shortly show,

+ ⊗ + = Sym(2) (+) ⊕ Alt(2) (+). (16.41)

Essentially, the observation is that

v ⊗ w =
1
2
(v ⊗ w + w ⊗ v) + 1

2
(v ⊗ w − w ⊗ v) (16.42)

=
1
2
(v ⊗ w + \ (v ⊗ w))︸                     ︷︷                     ︸

in Sym(2) (+ )

+ 1
2
(v ⊗ w − \ (v ⊗ w))︸                      ︷︷                      ︸

in Alt(2) (+ )

for any v ⊗ w ∈ + ⊗ + and that this decomposition satisfies the criteria of direct
sum decomposition. To verify that Sym(2) (+) ∩ Alt(2) (+) = {0 ⊗ 0}, note that any
v ⊗ w ∈ Sym(2) (+) ∩Alt(2) (+) satisfies \ (v ⊗ w) = v ⊗ w and \ (v ⊗ w) = −v ⊗ w,
which means that v ⊗ w = −v ⊗ w, so v ⊗ w = 0 ⊗ 0.

A basis for Sym(2) (+) is {e8 ⊗ e 9 + e 9 ⊗ e8 | 8 ≤ 9} and a basis for Alt(2) (+) is
{e8 ⊗ e 9 − e 9 ⊗ e8 | 8 < 9}1. Convince yourself that

dimSym(2) (+) = =(= + 1)
2

, (16.43)

dimAlt(2) (+) = =(= − 1)
2

. (16.44)

These subspaces are �-stable. To verify this claim, note that

1 Note that we say a basis rather than the basis. A choice of basis is just that: a choice. Some authors
might introduce factors of 1

?! where ? is the number of indices in the basis choice for Alt(2) (+ )
to make some formulas look nicer when introducing inner products in tensor product spaces.
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\ ((d6 ⊗ d6) (v ⊗ w)) = \ ((d6 ⊗ d6)
′∑
8 9

28 9 (e8 ⊗ e 9 + (−1)Be 9 ⊗ e8)) (16.45)

= \ (
′∑
8 9

28 9 (d6e8 ⊗ d6e 9 + (−1)Bd6e 9 ⊗ d6e8))

=

′∑
8 9

28 9 (\ (d6e8 ⊗ d6e 9 ) + (−1)B\ (d6e 9 ⊗ d6e8))

=

′∑
8 9

28 9 (d6e 9 ⊗ d6e8 + (−1)Bd6e8 ⊗ d6e 9 )

= (−1)B
′∑
8 9

28 9 (d6e8 ⊗ d6e 9 + (−1)Bd6e 9 ⊗ d6e8)

= (−1)Bv ⊗ w,

where B = 1 if v ⊗ w ∈ Sym(2) (+) and B = −1 if v ⊗ w ∈ Alt(2) (+). The prime on
the summation is just to serve as a reminder that the sum is restricted to 8 ≤ 9 for
B = 1 and 8 < 9 for B = −1. The restriction of d ⊗ d to these �-stable subspaces is
called the symmetric square and the alternating square of the d ⊗ d representation.
Using the language introduced in Definition 16.13, we say that Sym(2) (+) is a
subrepresentation of + ⊗ + and Alt(2) (+) is a subrepresentation of + ⊗ +.

16.9 New Representations From Old Ones - (External) Direct
Product of Two Groups

Recall that in Chapter 6 we discussed how tomake groups bymultiplying two groups.
Review the chapter if needed. In this chapter, we discussed the tensor product of two
groups and their representations. We will now discuss the (external) direct product
of two groups and their representations.

Definition 16.23 Let d (1) : �1 → �! (+1) be a linear representation of �1 and let
d (2) : �2 → �! (+2) be a linear representation of �2. Define the representation
d (1) × d (2) : �1 × �2 → �! (+1 ×+2) by

(d (1) × d (2) )61 ,62 = d
(1)
61 × d

(2)
62

for any (61, 62) ∈ �1 × �2. By this, we mean

(d (1) × d (2) )61 ,62 (v1, v2) = (d (1)61 v1, d
(2)
62 v2) ∈ +1 ×+2

for any (v1, v2) ∈ +1 × +2.We call this the direct product of the representation d (1)

and d (2) .
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Let j (×) be the character of d (1) × d (2) . Arguments similar to the one given in
the section of tensor products give

j (×) ((61, 62)) = j (1) (61)j (2) (62) (16.46)

for any (61, 62) ∈ �1 × �2.

16.10 New Representations From Old Ones - Lifting

Theorem 16.7 Let � and � be finite groups. Let 5 : � → � be a homomorphism.
Let d̃ : � → �! (+) be a representation of �. Then d ≡ d̃ ◦ 5 : � → �! (+) is a
representation of �. That is,

d : �
5
−→ �

d̃
−→ �! (+)

is a representation.

Proof Wemust verify that d ≡ d̃◦ 5 is a homomorphism. Let 61, 62 ∈ � be arbitrary.
Then

( d̃ ◦ 5 ) (6162) = d̃ 5 (6162) (16.47)
= d̃ 5 (61) 5 (62)

= d̃ 5 (61) d̃ 5 (62)

= ( d̃ ◦ 5 ) (61) ( d̃ ◦ 5 ) (62).

Therefore, d is a homomorphism from � to �! (+) and so, by definition, is a
representation of �. �

Definition 16.24 Using notation as in the previous theorem, the representation d ≡
d̃ ◦ 5 : � → �! (+) is said to be the lift or inflation of the representation of �.

Corollary 16.3 Lifting (or inflating) from a quotient group - Let # be a normal
subgroup of a finite group �. Consider the quotient group �/# and suppose that
one is able to construct a representation for �/#. Let d̃ : �/# → �! (+) be a
representation of �/#. Define 5 : � → �/# by 5 (6) = 6#. Then 5 : � → �/#
is a homomorphism. This follows since 5 (6162) = 6162# = 61#62# = 5 (61) 5 (62),
where we have used the fact the # E �. By Theorem 16.7, d̃ ◦ 5 is a representation
of �.We say that the representation of �/# can be lifted to give a representation of
�.

Example 16.11 Recall that �= E (=. Also, [(= : �=] = 2 so (=/�= � Z2. For
example, (=/�= = 〈(1 2)�=〉. There are two degree-1 representations of Z2. Then
d̃
(1)
(1 2)�=

= 1 and d̃
(2)
(1 2)�=

= −1 determine the two degree-1 representations of
(=/�=. Let 5 : (= → (=/�= be the homomorphism defined by 5 (G) = G�=. Then
the compositions d (8) ≡ d̃ (8) ◦ 5 : (= → �!1 (C) for 8 = 1, 2
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d (8) : (=
5
−→ (=/�=

d̃(8)

−−−→ �!1 (C) (16.48)

are representations of (=, according to Corollary 16.3. The representation 8 = 2
is called the sign representation of (=, often denoted as sgn. That is, sgn : (= →
�!1 (C) defined by

sgn(6) =
{
+1, if 6 ∈ (= is an even permutation.
−1, if 6 ∈ (= is an odd permutation.

(16.49)

is a representation of (=. (The case 8 = 1 is the trivial representation of (=.)

Example 16.12 Let� = �4 and let+ = {4}∪{(••)(••)}. That is,+ is an isomorphic
copy of the Klein 4-group (that is, Z2 × Z2) inside �4. Also, + E �4. (See Example
13.4. That example is about (4 but similar considerations apply to �4. See Table 9.2
to see that + is a union of conjugacy classes of �4 and, hence, a normal subgroup of
�4.) |�4/+ | = 12/4 = 3, so �4/+ � Z3. By Proposition 16.6, we have three distinct
degree-1 representations of �4/+ given by (where l = 42c8/3):

d̃
(1)
4+
= 1 d̃ (1)(1 2 3)+ = 1 d̃

(1)
(1 3 2)+ = 1

d̃
(2)
4 = 1 d̃ (2)(1 2 3)+ = l d̃

(2)
(1 3 2)+ = l

2

d̃
(3)
4 = 1 d̃ (3)(1 2 3)+ = l

2 d̃
(3)
(1 3 2)+ = l.

(16.50)

Let 5 : �4 → �4/+ be defined by 5 (6) = 6+ for every 6 ∈ �4. By Corollary 16.3,
d̃ (8) ◦ 5 : �4 → �!1 (C) for 8 = 1, 2, 3 are degree-1 representations of �4.

As demonstrated by the examples above, the observation that a representation
can be lifted to give a representation can allow one to fill in parts of a character
table, provided the group has normal subgroups that lead to quotient groups whose
representations are already known or, at the very least, are a little easier to calculate.

16.11 Schur’s Lemma

A very powerful and useful lemma in representation theory over C is Schur’s lemma.
But first, we need the following proposition.

Proposition 16.8 If g : + → + ′ is a �-linear map then

i) ker g is a �-stable subspace of + .
ii) im g is a �-stable subspace of + ′.

Proof i) Note that ker g is nonempty since 0 ∈ ker g. (This is because g is a linear
map. Therefore, g(0) = g(0 + 0) = g(0) + g(0) and, hence, g(0) = 0). Let
v ∈ ker g. We want to show that d6 (v) ∈ ker g. This holds because

g(d6 (v)) = d′6 (g(v)) = d′6 (0) = 0, (16.51)
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where the last equality holds because d′6 ∈ �! (+ ′) is also a linear map.
ii) Let w ∈ im g ⊆ + ′. Then g(v) = w for some v ∈ + and

d′6w = d′6g(v) = g(d6v) ∈ im g. (16.52)

We are now ready for Schur’s lemma.

Lemma 16.1 Schur’s Lemma Let d : � → �! (+) and d′ : � → �! (+ ′) be
irreducible representations. Let g : + → + ′ be a �-linear map.

i) If + � + ′, then g = 0.
ii) If + � + ′, then g is a scalar multiple of the identity map.

Proof i) ker g is a �-stable subspace of + . Since, by assumption, + is irreducible
this means ker g = {0} or ker g = + . If ker g = + , g ≡ 0. Suppose ker g = {0}.
im g is a �-stable subspace of + ′. Since, by assumption, + ′ is irreducible this
means im g = {0} or im g = + ′. If im g = {0}, then g ≡ 0. If im g = + ′, then g
is bĳective since ker g = {0} and im g = + ′. Therefore, g−1 exists so + � + ′, a
contradiction. Therefore, only g ≡ 0 does not lead to contradictions.

ii) If g ≡ 0 then it is clearly a scalar multiple of the identity map. Suppose g ≠ 0.
Then g has at least one nonzero eigenvalue because C is algebraically closed
(hence why we are considering representations overC and notR and this version
of Schur’s lemma is for representations over C). Let v ≠ 0 be an eigenvector for
this eigenvalue _. Consider g̃ ≡ g −_ · id. We clearly have g̃ ◦ d6 = d′6 ◦ g̃ for all
6 ∈ �. By assumption, + is irreducible so this means ker g̃ = {0} or ker g̃ = + .
Since v ≠ 0 ∈ ker g̃, we conclude that ker g̃ = + ⇒ g̃ ≡ 0 and, hence, g ≡ _ · id.
�

Definition 16.25 A scalar multiple of the identity map is called a homothety.

Using this terminology, Schur’s lemma says that g is a homothety. If the repre-
sentations d and d′ are nonequivalent, then the scalar multiple is 0. In general, it is
_ · id for some nonzero _.

Note: It is important to remember that Schur’s lemma stipulates that the repre-
sentations must be irreducible, and not just any generic representations.

Note: The proof does not assume that � is finite. It can be infinite. See Problem
16.21.

Let us consider things in terms of matrices. For example, let � be a finite group
with |� | = : and dim+ = =. Let d : � → �! (+) be an irreducible representation.
Then we have matrices

d61 , d62 , · · · , d6:

which multiply in the same way as the group elements in �. It is obvious that
the identity matrix �=×= as well as _�=×= for any _ ∈ C commutes with all these
matrices (0=×= does too, but we are interested in invertible matrices). However, what
Schur’s lemma says is that if these collection of matrices are not just any collection
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of = × = matrices but, rather, are special in that they are matrices of an irreducible
representation of some group �, then �=×= and its scalar multiples are the only
matrices that commute with these matrices.

Example 16.13 Consider the matrices

�2×2 =

[
1 0
0 1

]
and � =

[
2 3
1 4

]
. (16.53)

Which matrices commute with �2×2 and �? Let us define

� =

[
0 1

2 3

]
(16.54)

and impose �� = ��. This then gives four equations for the four unknowns 0, 1, 2, 3.
Well,

�� − �� =
[
−1 + 32 −30 − 21 + 33
0 + 22 − 3 1 − 32

]
. (16.55)

Demanding that this vanish then gives that 1 = 32 and 3 = 0 + 22. Thus,

� =

[
0 32
2 0 + 22

]
with 0, 2 ∈ C (16.56)

commutes with �2×2 and �. In particular, choosing 0 = 2 = 1 gives

� =

[
1 3
1 3

]
, (16.57)

which is certainly not proportional to the identity. Thus, we see that it is certainly
possible to have a collection of matrices where some nonidentity matrix commutes
with every matrix in that collection of matrices.

16.12 Orthogonality of Characters of Irreducible
Representations

Proposition 16.9 Let � be a finite group. Let d : � → �! (+) and d′ : � →
�! (+ ′) be representations. Let ℎ : + → + ′ be any linear map. Then consider the
linear map ℎ0 : + → + ′ created from ℎ by "averaging over �" defined as

ℎ0 =
1
|� |

∑
6∈�

d′
6−1ℎd6 =

1
|� |

∑
6∈�
(d′6)−1ℎd6 .
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+ +

+ ′ + ′

d6

ℎ0 ℎ

(d′6)−1

Then ℎ0 is �-linear.

Proof ℎ0 is �-linear because for any G ∈ � we have

d′
G−1ℎ

0dG =
1
|� |

∑
6∈�

d′
G−1d

′
6−1ℎd6dG (16.58)

=
1
|� |

∑
6∈�

d′
G−16−1ℎd6G

=
1
|� |

∑
6∈�

d′(6G)−1ℎd6G

=
1
|� |

∑
6∈�

d′
6−1ℎd6 (by Problem 16.1)

= ℎ0,

so that ℎ0dG = d
′
Gℎ

0. �

Corollary 16.4 Let d, d′ be irreducible representations. Then

i) If d � d′ then ℎ0 = 0.
ii) If + = + ′ with dim+ = = and d = d′ then ℎ0 = _�=×= where _ = 1

=
Tr ℎ.

Proof i) If d and d′ are irreducible then Schur’s lemma requires ℎ0 = 0.
ii) If d and d′ are irreducible then Schur’s lemma requires ℎ0 = _�=×= for some

scalar _. Taking the trace of ℎ0 then gives

Tr(ℎ0) = Tr(_�=×=) = _= =
1
|� |

∑
6∈�

Tr(d−1
6 ℎd6) (16.59)

=
1
|� |

∑
6∈�

Tr(ℎ) = Tr(ℎ).

This gives _ = 1
=

Tr(ℎ), as claimed. �

What’s the idea behind all of this? Well, ℎ : + → + ′ was an arbitrary linear
map. If we apply Schur’s lemma and let ℎ : + → + ′ run through a bunch of simple
linear maps, it seems like we will derive a lot of facts about or constraints on the
irreducible (Why? Hint: What does Schur’s lemma require?) representations d and
d′. Consider a finite group � and a vector space + over C with dim+ = = and
let d, d′ be irreducible representations. Let’s switch from abstract linear maps and
choose specific bases so that we may think of d6 and d′6 as matrices. Then,
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i) If d � d′, ℎ0 = 0=×= for any linear map ℎ : + → + ′. In particular, let us run
through all linear maps where ℎ = Θ(01) where Θ is defined to be nonzero only
for Θ(01)

8 9
= 1 if 8 = 0, 9 = 1 and Θ(01)

8 9
= 0 if 8 ≠ 0, 9 ≠ 1. (Basically, we

are running through all matrices where one of the entries is 1 and all the other
entries are 0. 0 and 1 are labels for such matrices.)

(ℎ0)8 9 = (0=×=)8 9 = 0 =
1
|� |

∑
6∈�

∑
:

∑
;

(d′
6−1 )8:ℎ:; (d6); 9 (16.60)

=
1
|� |

∑
6∈�
(d′
6−1 )80 (d6)1 9

for 0, 1 arbitrary. Let’s box it to keep track of the important work.

0 =
1
|� |

∑
6∈�
(d′
6−1 )80 (d6)1 9 (16.61)

for 0, 1 arbitrary.
ii) If+ = + ′ and d = d′, then ℎ0 = _�=×= for some scalar _. Consider ℎ = Θ(01) for

arbitrary 0, 1. Then Tr(ℎ) = Tr(Θ(01) ) = X01 , where X is the Kronecker delta
function. Therefore, _ = 1

=
Tr(ℎ) = 1

=
X01 Then,

(ℎ0)8 9 = (_�=×=)8 9 =
1
=
X01X8 9 =

1
|� |

∑
6∈�

∑
:

∑
;

(d6−1 )8:ℎ:; (d6); 9 (16.62)

=
1
|� |

∑
6∈�
(d6−1 )80 (d6)1 9

where 0, 1 are arbitrary. Let’s box it to keep track of the important work.

1
=
X01X8 9 =

1
|� |

∑
6∈�
(d6−1 )80 (d6)1 9 (16.63)

for 0, 1 arbitrary.

Let’s collect this work into a theorem.

Theorem 16.8 Schur orthogonality relations - Let d : � → �! (+) and d′ : � →
�! (+ ′) be inequivalent irreducible representations. Let = = dim+. Then

i) 0 = 1
|� |

∑
6∈� (d′6−1 )80 (d6)1 9 .

ii) 1
=
X01X8 9 =

1
|� |

∑
6∈� (d6−1 )80 (d6)1 9

Proof See the discussion above. �

Here is an idea: There are a lot of indices floating around in the boxed equations.
It seems like those formulas hold so much information that we can afford to simplify
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things a bit and still learn some nontrivial information. In particular, set 0 = 8 and
1 = 9 and sum over 8, 9 and recall that, by definition, Tr(dG) = j(G) for all G ∈ �.
i) If d � d′, then

0 =
1
|� |

∑
6∈�

j′(6−1)j(6) = 1
|� |

∑
6∈�

j′(6)j(6), (16.64)

where we have used Proposition 16.2.
ii) If + = + ′ and d = d′, then

1 =
1
|� |

∑
6∈�

j(6−1)j(6) = 1
|� |

∑
6∈�

j(6)j(6), (16.65)

where we have used Proposition 16.2.

If we combine all of this together, we see that we have derived a nontrivial result.
Before that, a definition.

Definition 16.26 Let � be a finite group. The inner product (q |k) on characters of
� is defined as

(q|k) = 1
|� |

∑
6∈�

q(6)k(6).

Theorem 16.9 Let � be a finite group. Let d : � → �! (+) and d′ : � → �! (+ ′)
be irreducible representations with dim+ = = and dim+ ′ = =′. Then

i) If d � d′, then 0 = 1
|� |

∑
6∈� j(6)j′(6) = (j |j′).

ii) If + = + ′ and d = d′, then 1 = 1
|� |

∑
6∈� j(6)j(6) = (j |j).

This theorem says that characters of irreducible representations of a finite group
� form an orthonormal set under the inner product on characters.

Definition 16.27 If d : � → �! (+) is an irreducible representation, its character
is called an irreducible character.

Proposition 16.10 Let � be a finite group. Let ' = {A1, · · · , A: } be a set of repre-
sentatives of the conjugacy classes of �. That is,

[A1], · · · , [A: ]

are the conjugacy classes of �. Then

(q|k) = 1
|� |

∑
A ∈'
| [A] | · q(A)k(A).

Proof This follows directly from the fact that characters are class functions (see
Proposition 16.2). �
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Proposition 16.10 along with the fact that characters are class functions explains
why we choose to add a row called "size" to the character table (see Table 16.5 in
Problem 16.26 for an example). Writing a row for the size of each conjugacy class
later helps one during the evaluation of inner products of characters.

Proposition 16.11 If q andk are characters of a finite group�, then (q|k) = (k |q).

Proof

(q|k) = 1
|� |

∑
6∈�

q(6)k(6) (16.66)

=
1
|� |

∑
6∈�

q(6)k(6−1) (by Proposition 16.2)

=
1
|� |

∑
6∈�

q(6−1)k(6) (by Problem 16.1)

=
1
|� |

∑
6∈�

q(6)k(6)

= (k |q).

�

16.13 Characters Characterize Representations

Theorem 16.10 Let d : � → �! (+) be a representation of the group � with
character j. Let

+ � ,1 ⊕ · · · ⊕,:

where the,8 are irreducible. Let d′ : � → �! (+ ′) be an irreducible representation
with character j′. Then the number of,8 that are isomorphic to + ′ is (j |j′).

Proof Let j (8) be the character of the representation for ,8 , for 8 = 1, · · · : in the
decomposition of + . Then we have

j = j (1) + · · · + j (:) (16.67)

⇒ (j |j′) =
:∑
9=1
(j ( 9) |j′) =

:∑
9=1

{
1, if + ′ � , 9 .

0, if + ′ � , 9 .
(16.68)

where we have used Theorem 16.9. �

Corollary 16.5 Let d : � → �! (+) and d′ : � → �! (+ ′) be representations.
Then d � d′ (also sometimes written as + � + ′) if and only if their characters are
equal.
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Proof Decompose + and + ′ as a direct sum of irreducibles. Let j be the character
of d and j′ be the character of d′. Let k : � → �! (,) be any irreducible
representation with character \.
⇒ If j = j′, then (j |\) = (j′ |\) so by Theorem 16.10, , occurs the same
number of times in the decomposition of + and + ′. , was an arbitrary irreducible
representation.
⇐ Let, be an arbitrary irreducible representation and suppose the number of times
, occurs in + and + ′ is the same. We conclude that they are isomorphic (as vector
spaces, see the clarifying note after Definition 16.10). �

Note: Theorems such as these are what we mean when we say "characters charac-
terize representations." Knowing the character of a representation lets us know how it
is composed of the irreducible representations of that group. Knowing the character
of two representations lets us know if they are really "the same" representations or
not.

Let’s introduce a bit more notation. Let d : � → �! (+) be a representation of
the group � with character j. We will use the following notation:

<+ = + ⊕ · · · ⊕ +︸        ︷︷        ︸
< terms

(16.69)

<d = d ⊕ · · · ⊕ d︸        ︷︷        ︸
< terms

. (16.70)

Now suppose d : � → �! (+) is an arbitrary representation. Decompose + as a
direct sum

+ � ,1 ⊕ · · · ⊕,: (16.71)

where the,8 are isomorphic copies of the vectors spaces of the irreducible represen-
tations. Let #8AA be the number of (distinct) irreducible representations of �. Label
these distinct representations (really, the vector spaces they act on) by,1, · · ·,#8AA

and label their characters j (1) , · · · , j (#8AA ) , respectively. Then we can write

+ � <1,1 ⊕ · · · ⊕ <#8AA
,#8AA

, (16.72)

where <8 ≡ (j |j (8) ) and where we have used Theorem 16.10. Therefore, the
character j of d : � → �! (+) is

j = <1j
(1) + · · · + <#8AA

j (#8AA ) (16.73)

⇒ (j |j) =
#8AA∑
9=1

<2
9 , (16.74)

where we have used Theorem 16.9. This equation leads to the following theorem.
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Theorem 16.11 Let d : � → �! (+) be a representation of the group � with
character j. Then (j |j) > 0 and (q|q) = 1 if and only if d : � → �! (+) is an
irreducible representation.

Proof Using notation as above, we see from

(j |j) =
#8AA∑
9=1

<2
9 (16.75)

that (j |j) is certainly positive. It is equal to 1 only if one of the < 9 is equal to 1 and
all the others vanish. In that case, + � ,A where A is the index for which <A = 1. �

Note: Theorem 16.11 is very convenient as it gives a criterion for checking
whether a given representation is irreducible or not.

Theorem 16.12 Let d : � → �! (+) be an irreducible representation with degree
= and character j. Then d occurs in the regular representation = times. That is,
if dA46 : � → �! (+A46) is the regular representation, then +A46 contains =
copies of + (up to vector space isomorphisms) in its decomposition into irreducible
representations.

Proof The character of the regular representation of � is (see Proposition 16.3)

jA46 (6) =
{
|� |, if 6 = 4,
0, if 6 ≠ 4.

(16.76)

Use Theorem 16.10 along with

(jA46 |j) = 1
|� |

∑
6

jA46 (6)j(6) = 1
|� | j

A46 (4)j(4) = 1
|� | |� |= = =. (16.77)

�

Corollary 16.6 Let � be a finite group. Let #8AA be the number of irreducible
representations of �. Let =1, · · · , =#8AA

be the degrees of these #8AA irreducible
representations. Then

i)
∑#8AA

9=1 =2
9
= |� |.

ii)
∑#8AA

9=1 = 9 j
( 9) (6) = 0 for 6 ≠ 4.

Proof Let j (1) , · · · , j (#8AA ) be the characters of the #8AA irreducible representations
of �. By Theorem 16.12,

jA46 =

#8AA∑
9=1

= 9 j
( 9) . (16.78)
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i) Therefore, jA46 (4) = ∑#8AA

9=1 = 9 j
( 9) (4) ⇒ |� | = ∑#8AA

9=1 =2
9
, where we used

jA46 (4) = |� | and j ( 9) (4) = = 9 .
ii) Therefore, jA46 (6) = ∑#8AA

9=1 = 9 j
( 9) (6) ⇒ 0 =

∑#8AA

9=1 = 9 j
( 9) (6), where we used

jA46 (6) = 0 whenever 6 ≠ 4. �

Theorem 16.13 Let # be a normal subgroup of a finite group �. Let [� : #] = :
and let A1, · · · , A: be coset representatives. That is,

� = A1# ∪ · · · ∪ A:#. (16.79)

Let d̃ : �/# → �! (+) be a representation. Let 5 : � → �/# be defined by
5 (6) = 6#. Let d be the lift of the representation d̃. That is, d ≡ d̃◦ 5 : � → �! (+).
Then d is an irreducible representation of � if and only if d̃ is an irreducible
representation of �/#.

Proof Let j be the character of d and let j̃ be the character of d̃. First, note that
d6 = d̃6# , so Tr(d6) = Tr( d̃6# ). That is, j(6) = j̃(6#). In particular, if 6 ∈ A8#
for some 8, then 6 = A8= for some = ∈ # . Then

j(6) = j̃(6#) = j̃(A8=#) = j̃(A8#) = j(A8). (16.80)

That is, all elements of � in the same coset have the same character. Also,

(j |j) = 1
|� |

∑
6∈�

j(6)j(6) (16.81)

=
1
|� |

∑
8=1, · · · ,:

∑
=∈#

j(A8=)j(A8=)

=
1
|� |

∑
8=1, · · · ,:

∑
=∈#

j(A8)j(A8)

=
|# |
|� |

∑
8=1, · · · ,:

j(A8)j(A8)

=
1

[� : #]
∑

8=1, · · · ,:
j̃(A8#) j̃(A8#)

= ( j̃ | j̃).

Thus, we see that (j |j) = 1 if and only if ( j̃ | j̃) = 1 so, by Theorem 16.11, d is
irreducible if and only if d̃ is irreducible. �

In the above, (j |j) and ( j̃ | j̃) are inner products but over different groups. That
is, (j |j) has a sum over all elements in� whereas ( j̃ | j̃) has a sum over all elements
in �/#. Perhaps writing (j |j)� and ( j̃ | j̃)�/# to serve as a reminder of this fact
might prevent some future confusion. Let us rephrase the previous result in another
way.
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Proposition 16.12 If j is a lift (or inflation) to� of an irreducible character j̃, then
j is an irreducible character if and only if j̃ is an irreducible character.

Proof Above, we showed (j |j)� = ( j̃ | j̃)�/# . They are either both equal to 1 and
hence are irreducible characters, or not. �

16.14 Characters of Common Representations

This section collects theorems of characters of common representations and intro-
duces a few new theorems.

Proposition 16.13 Let � be a group. Let d (1) : � → �! (+1) and d (2) : � →
�! (+2) be linear representations of �. Let j (1) and j (2) be their respective char-
acters.

i) Let j (⊕) be the character of d (1) ⊕ d (2) . Then j (⊕) (6) = j (1) (6) + j (2) (6) for
any 6 ∈ �.

ii) Let j (⊗) be the character of d (1) ⊗ d (2) . Then j (⊗) (6) = j (1) (6)j (2) (6) for
any 6 ∈ �.2

Proof i) Choose a basis of +1 ⊕ +2 so that

d
(1)
6 ⊕ d (2)6 =

+1 +2[ ]
d
(1)
6 0 +1

0 d
(2)
6 +2

(16.82)

Clearly, Tr(d (1)6 ⊕ d (2)6 ) = Tr(d (1)6 ) + Tr(d (2)6 ).
ii) This was proved at the end of Section 16.8. We copy the final lines of the proof

here:

Tr(d (1)6 ⊗ d (2)6 ) =
<∑
:=1

=∑
;=1

(
(d (1)6 ⊗ d (2)6 )

)
:;,:;

(16.83)

=

<∑
:=1

=∑
;=1

(
d
(1)
6

)
::

(
d
(2)
6

)
;;

= Tr(d (1)6 ) Tr(d (2)6 ).

Proposition 16.14 Let �1 and �2 be groups. Let d (1) : �1 → �! (+1) and d (2) :
�2 → �! (+2) be linear representations of �1 and �2, respectively. Let j (1)

2 Some books write j (⊗) = j (1) j (2) , where it is understood that this does not mean function
composition of j (1) and j (2) but instead their products after evaluating them for a given 6 ∈ �.
That is, j (⊗) = j (1) j (2) means j (⊗) (6) = j (1) (6)j (2) (6) for any 6 ∈ �.
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and j (2) be their respective characters. Let j (×) be the character of d (1) × d (2) :
�1×�2 → �! (+1×+2). Then j (×) ((61, 62)) = j (1) (61)j (2) (62) for any (61, 62) ∈
�1 × �2.3

Proof The derivation/proof is similar to that of direct products and is omitted. �

Proposition 16.15 Use notation as in Proposition 16.14. If d (1) and d (2) are irre-
ducible representations, then d (1) ×d (2) is an irreducible representation on�1×�2.

Proof If d (1) and d (2) are irreducible, then

1
|�1 |

∑
61

|j (1) (61) |2 = 1, (16.84)

1
|�2 |

∑
62

|j (2) (62) |2 = 1. (16.85)

by Theorem 16.11. Therefore,

1
|�1 |

∑
61

|j (1) (61) |2
1
|�2 |

∑
62

|j (2) (62) |2 = 1, (16.86)

⇒ 1
|�1 | · |�2 |

∑
61 ,62

|j (×) ((61, 62)) |2 = 1. (16.87)

By Theorem 16.11, d (1) × d (2) is irreducible. �

Proposition 16.16 Let � be a group. Let d : � → �! (+) be linear representations
of �. Let j its character. Consider the d ⊗ d representation on + ⊗ +. Recall that
+ ⊗ + = Sym(2) (+) ⊕ Alt(2) (+). Recall that d ⊗ d restricted to Sym(2) (+) and
Alt(2) (+) is �-stable.

i) Let j (2)Sym be the character of d ⊗ d restricted to Sym(2) (+). Then

j
(2)
Sym (6) =

1
2
(j(6)2 + j(62))

for any 6 ∈ �.
ii) Let j (2)Alt be the character of d ⊗ d restricted to Alt(2) (+). Then

j
(2)
Alt (6) =

1
2
(j(6)2 − j(62))

for any 6 ∈ �.

3 Some books write j (×) = j (1) j (2) , where it is understood that this does not mean function
composition of j (1) and j (2) but instead their products after evaluating them for a given (61, 62) ∈
�1 ×�2. That is, j (×) = j (1) j (2) means j (×) ( (61, 62)) = j (1) (61)j (2) (62) for any (61, 62) ∈
�1 ×�2.
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iii) j (2)Sym (6) + j
(2)
Alt (6) = j(6)

2 for any 6 ∈ �.

Proof Fix 6 ∈ �.WLOG, suppose that d6 is unitary. Choose an eigenbasis so that
d6 is diagonal. Then d6e8 = _8e8 where _8 ∈ C. Therefore, j(6) = Tr(d6) =

∑
8 _8

while j(62) = Tr(d62 ) = Tr(d6d6) =
∑
8 _

2
8
.

i) Recall that a basis for Sym(2) (+) is e8 ⊗ e 9 + e 9 ⊗ e8 with 8 ≤ 9 . These are also
an eigenbasis for Sym(2) (+) with eigenvalues _8_ 9 since

(d6 ⊗ d6) (e8 ⊗ e 9 + e 9 ⊗ e8) = _8_ 9 (e8 ⊗ e 9 + e 9 ⊗ e8). (16.88)

The trace is the sum of the eigenvalues. Therefore,

j
(2)
Sym (6) =

∑
8≤ 9

_8_ 9 =
∑
8

_2
8 +

∑
8< 9

_8_ 9 (16.89)

=
∑
8

_2
8 +

1
2

∑
8≠ 9

_8_ 9 =
∑
8

_2
8 +

1
2
((

∑
8

_8)2 −
∑
8

_2
8 )

=
1
2
(
∑
8

_8)2 +
1
2

∑
8

_2
8

=
1
2
j(6)2 + 1

2
j(62).

ii) Recall that a basis for Alt(2) (+) is e8 ⊗ e 9 − e 9 ⊗ e8 with 8 < 9 . These are also
an eigenbasis for Alt(2) (+) with eigenvalues _8_ 9 since

(d6 ⊗ d6) (e8 ⊗ e 9 − e 9 ⊗ e8) = _8_ 9 (e8 ⊗ e 9 − e 9 ⊗ e8). (16.90)

The trace is the sum of the eigenvalues. Therefore,

j
(2)
Alt (6) =

∑
8< 9

_8_ 9 =
1
2

∑
8≠ 9

_8_ 9 =
1
2
(
∑
8

_8)2 −
1
2

∑
8

_2
8 (16.91)

=
1
2
j(6)2 − 1

2
j(62).

iii) This follows from the previous two parts.

j
(2)
Sym (6) + j

(2)
Alt (6) =

1
2
j(6)2 + 1

2
j(62) + 1

2
j(6)2 − 1

2
j(62) (16.92)

= j(6)2.

This makes sense since Sym(2) (+) ⊕ Alt(2) (+) = + ⊗ +. �
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16.15 Number of Inequivalent Irreducible Representations of
Finite Groups

Recall that a class function is a function 5 : � → C such that 5 (6) = 5 (ℎ6ℎ−1) for
any 6, ℎ ∈ �.
Definition 16.28 Let C(�) be the set of all class functions on �. That is,

C(�) = { 5 : � → C | 5 (6) = 5 (ℎ6ℎ−1),∀6, ℎ ∈ �}. (16.93)

Theorem 16.9 shows that the characters of irreducible representations of a finite
group � form an orthonormal set of functions in C(�). Actually, they are not just
orthonormal in C(�), but they also span C(�). That is, any class function on � can
be written as a linear combination of the irreducible characters of �. Let us work to
prove these claims.
Theorem 16.14 Let� be a finite group and let d : � → �! (+) be a representation
of �. Let 5 be a class function on �. Construct a linear map ' 5 : + → + defined
by

' 5 =
1
|� |

∑
6∈�

5 (6)d6 . (16.94)

Let = = dim+ and let j be the character of d. If d : � → �! (+) is an irreducible
representation, then ' 5 is proportional to the identity map. In particular,

' 5 =
1
=
( 5 |j)�=×=. (16.95)

Proof Consider d−1
ℎ
' 5 dℎ for any ℎ ∈ �. Then

d−1
ℎ ' 5 dℎ =

1
|� |

∑
6∈�

5 (6)d−1
ℎ d6dℎ (16.96)

=
1
|� |

∑
6∈�

5 (6)dℎ−16ℎ

=
1
|� |

∑
6∈�

5 (ℎ6ℎ−1)dℎ−16ℎ

= ' 5 ,

where third equality holds because 5 is a class function. Therefore, ' 5 dℎ = dℎ' 5
for any ℎ ∈ �. By Schur’s lemma (see Lemma 16.1), ' 5 = _�=×= for some constant
_ ∈ C. Taking the trace of both sides, we see that Tr(' 5 ) = =_. But

Tr(' 5 ) =
1
|� |

∑
6∈�

5 (6) Tr(d6) =
1
|� |

∑
6∈�

5 (6)j(6) = ( 5 |j). (16.97)
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Therefore, _ = 1
=

Tr(' 5 ) = 1
=
( 5 |j) so ' 5 = 1

=
( 5 |j)�=×=. �

With this, we have enough information to prove that the irreducible characters of
a finite group � form an orthonormal basis of C(�).

Theorem 16.15 Let #8AA be the number of inequivalent irreducible representations
of a finite group �. Let d (1) : � → �! (+ (1) ), · · · , d (#8AA ) : � → �! (+ (#8AA ) ) be
the irreducible representations of�. Let j (1) , · · · , j (#8AA ) be the characters of those
irreducible representations. Then j (1) , · · · , j (#8AA ) form an orthonormal basis of
C(�).

Proof Theorem 16.9 shows that the characters of irreducible representations of a
finite group � forms an orthonormal set of functions in C(�). We must show
that any class function can be written as a linear combination of the irreducible
characters. Suppose otherwise. Suppose there exists a function 5 ∈ C(�) which
has no components of the irreducible characters. That is, suppose ( 5 |j (8) ) = 0 for
8 = 1, · · · , #8AA . Construct the functions ' (8)

5
= 1
|� |

∑
6∈� 5 (6)d (8)6 for 8 = 1, · · · ,

#8AA . Applying this to all the irreducible representations, we conclude that ' (8)
5
= 0

for all irreducible representations 8 = 1, · · · , #8AA . Any other (finite-dimensional)
representation is isomorphic to a direct sum of irreducible representations (see
Theorem 16.4). Therefore, ' 5 = 0 for any (finite-dimensional) representation used
to construct ' 5 . Consider the regular representation d (A46) : � → �! (+ (A46) ) and
construct ' (A46)

5
= 1
|� |

∑
6∈� 5 (6)d (A46)6 . Then

0 = ' (A46)
5

e4 =
1
|� |

∑
6∈�

5 (6)d (A46)6 e4 =
1
|� |

∑
6∈�

5 (6)e6 . (16.98)

By construction in the regular representation, {e6 | 6 ∈ �} is a basis of + (A46) .
Therefore, 5 (6) = 0 for all 6 ∈ �. Thus, any function in C(�) can be written as a
linear combination of irreducible characters. �

Theorem 16.16 The number of conjugacy classes of a finite group � is equal to the
number of inequivalent irreducible representations of �.

Proof Let [61], · · · , [6: ] be the distinct conjugacy classes of �. Any function in
C(�) is determined by its value of these : conjugacy classes. That is, : num-
bers completely determine any conjuacy class function. The dimension of C(�) is
therefore :. However, Theorem 16.15 says that the dimension of C(�) is #8AA , the
number of inequivalent irreducible representations of �. Therefore, : = #8AA . The
number of conjugacy classes of � is equal to the number of inequivalent irreducible
representations of �. �

As a mnemonic, the above theorem can be thought of as: "character tables are
square." It is square in the sense that the number columns listing the conjugacy
classes is equal to the number of rows listing the irreducible characters. Of course,
one may also add a row at the very top for the sizes of the conjugacy classes and a
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column or two in other conventions, but the mnemonic is helpful for getting the gist
of the above theorem.

Theorem 16.17 Let � be a finite group. Let | [B] | be the number of elements in the
conjugacy class [B] . Then

i)
∑#8AA

8=1 j (8) (B)j (8) (B) = |� |/| [B] |.
ii) If C ∈ � is not conjugate to B, then

#8AA∑
8=1

j (8) (B)j (8) (C) = 0. (16.99)

Proof Let ΠB be a conjugacy class function that is equal to 1 on the conjugacy class
[B] and 0 otherwise. Since it is a class function, we can, according to Theorem 16.15,
write it as

ΠB =

#8AA∑
8=1

_8j
(8) (16.100)

for some _8 . In fact, _8 = (ΠB |j (8) ) = | [B] |
|� | j

(8) (B) (why?). Then for any C ∈ �, we
find

ΠB (C) =
| [B] |
|� |

#8AA∑
8=1

j (8) (B)j (8) (C). (16.101)

By considering the case where C belongs to [B] or not, the previous equation proves
both claims:

• If C is conjugate to B, then ΠB (C) = 1 so

1 =
| [B] |
|� |

#8AA∑
8=1

j (8) (B)j (8) (C),

⇒ |� |
| [B] | =

#8AA∑
8=1

j (8) (B)j (8) (C). (16.102)

• If C is not conjugate to B, then ΠB (C) = 0 so

0 =
| [B] |
|� |

#8AA∑
8=1

j (8) (B)j (8) (C),

⇒ 0 =
#8AA∑
8=1

j (8) (B)j (8) (C). (16.103)
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16.16 Irreducible Representations of Abelian Groups

Theorem 16.18 Let � be a finite or infinite abelian group. Let d : � → �! (+)
be a representation. Let dim+ be finite. If d is an irreducible representation then
dim+ = 1.

Proof This is Problem 16.21. You are asked to prove this using Schur’s lemma. �

We can prove a stronger statement if the group � is finite.

Theorem 16.19 A finite group � is abelian if and only if all the irreducible repre-
sentations of � have degree 1.

Proof Let #2>= 9 be the number of conjugacy classes of�. Let =1, · · · , =#2>= 9
be the

degrees of the irreducible representations of�. Note that =1, · · · , =#2>= 9
are positive

integers. In abelian groups, every element is in its own conjugacy class. Therefore,
#2>= 9 = |� | for finite abelian groups. We know that |� | = =2

1 + · · · + =
2
#2>= 9

(see
Corollary 16.6). This is possible if and only if =8 = 1 for 8 = 1, · · · , #2>= 9 . �

The above theorem required� to be a finite group. See Problem 16.21 for another
proof that any irreducible representation of an abelian group has degree 1, but where
� doesn’t have to be a finite group (dim+ is still assumed to be finite, though).

Theorem 16.20 Let � be a finite group. Let � be an abelian subgroup of �. Each
irreducible representation of � has degree at most [� : �] = |� |/|�|.

Proof Let d : � → �! (+) be an irreducible representation of �. Let \ : � →
�! (+) be the restriction of d to the subgroup �. Then clearly \ is a representation
of �. Let, ⊆ + be an irreducible subrepresentation of + (see Definition 16.13 if a
reminder is necessary). By Theorem 16.19, dim, = 1. Let us define a subspace of
+ as follows:

+ ′ =
⋃
6∈�

d6,. (16.104)

+ ′ is clearly�-stable. Since d is an irreducible representation, it must be that+ ′ = +.
This fact lets us put a bound on the dimension of +. Since dim, = 1, it is also
true that dim d6, = 1 for any 6 ∈ ,. It would be incorrect to say that, therefore,
dim+ = |⋃6∈� d6, | = |� |. For example, the vector subspace d6, could be the
same for some 6 ∈ �. In fact, d6, depends only on the left coset of � in �. Let
6 = A0, where A ∈ � and 0 ∈ �. Then d6, = dA0, = dA d0, = dA,, where
the last equality is because , is �-stable since it is a subrepresentation of + for
the representation \ : � → �! (+). Let : = [� : �] . Pick coset representatives
A1, · · · , A: for the left cosets of � in �. That is,

A1�, · · · , A:� (16.105)

are the : (distinct) left cosets of � that form a partition of the group �. Then
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+ =
⋃
6∈�

d6, =

:⋃
9=1
dA 9,. (16.106)

It would be incorrect to say that, therefore, dim+ = : = [� : �] . For example, for
some representations it might be that d4 = � and dA8 = � for some coset representative
A8 . In such a case, d4, = dA8,. The best case scenario is that dA8, ≠ dA 9, for
8 ≠ 9 , but this is not guaranteed. Therefore, the best we can say from this work is
that dim+ ≤ : = [� : �] = |� |/|�|. �

Example 16.14 Let� = �= for = ≥ 3. Let � = 〈A〉. Then � is an abelian subgroup of
�= with [�= : 〈A〉] = 2. By the previous theorem, all the irreducible representations
of �= are at most degree 2. Since �= is not an abelian group, this means that �= has
at least one irreducible representation of degree 2 (if it didn’t, it would be an abelian
group according to Theorem 16.19).

Example 16.15 Let � = &8. Let � = 〈−1〉. Then � is an abelian subgroup of &8
with [&8 : 〈−1〉] = 4. By the previous theorem, all the irreducible representations
of &8 are at most degree 4. Since &8 is not an abelian group, this means that &8 has
at least one irreducible representation of degree 2, 3, or 4 (if it didn’t, it would be an
abelian group according to Theorem 16.19).

Further Reading

1. Serre, Jean-Pierre (1977) Linear Representations of Finite Groups.
2. Steinberg, Benjamin (2012) Representation Theory of Finite Groups: An Intro-

ductory Approach (Universitext).
3. Zee, Anthony (2016) Group Theory in a Nutshell for Physicists.

Problems

16.1 Let � be a finite group and 5 a function on the elements of �. Prove that∑
6∈�

5 (6) =
∑
6∈�

5 (6−1) =
∑
6∈�

5 (6ℎ) =
∑
6∈�

5 (ℎ6) =
∑
6∈�

5 (ℎ6ℎ−1)

for any ℎ ∈ �. This is sometimes called a rearrangement lemma.

16.2 Let d : � → �! (+) be a representation with degree = < ∞. For simplicity,
consider d6 as an = × = matrix for each 6 ∈ �. Show that d̃ ≡ (d6−1 )) is also a
representation, where the superscript ) denotes the transpose of the matrix.

16.3 Let d : � → �!= (C) be a representation.
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a) Show that setting k6 = d6 provides a representation d : � → �!= (C). It is
called the conjugate representation. Give an example showing that k and d do
not have to be equivalent.

b) Let q : � → C× be a degree-1 representation of �. Define a map dq : � →
�!= (C) by dq6 = q6d6 . Show that dq is a representation. Give an example
showing that d and dq do not have to be equivalent.

16.4 Let � be a finite group. Let d : � → �! (+) be a representation. Let j be the
character of �. How many copies of the trivial representation does d contain?

16.5 Let � be a finite group and let j be the character of any nontrivial irreducible
representation of �. Show that

∑
6∈� j(6) = 0.

16.6 Show that 5 : � → C is a class function (that is, 5 (6) = 5 (ℎ6ℎ−1) for any
6, ℎ ∈ �) if and only if 5 (6ℎ) = 5 (ℎ6) for any 6, ℎ ∈ �.
16.7 Let � be a finite group and let j be a character of a finite degree representation
of� such that j(6) = 0 for 6 ≠ 4. Show that j is an integer multiple of the character
jA46 of the regular representation of �. That is, show that j(6) = _ · jA46 (6) for
any 6 ∈ � where _ ∈ Z (actually, _ ∈ N).
16.8 Let � be a finite group.

a) Let B ∈ �. Show that j(B) ∈ R (that is, j(B) = j(B)) for any irreducible
character j if and only if B is conjugate to B−1. (Hint: The following is incorrect
(why? Hint: What if j is the trivial character?): "If j(B) = j(B−1) then, since
characters are class functions, B and B−1 are conjugate.")

b) Conclude that j(B) = j(B) for any character j of � (irreducible or not) if and
only if B is conjugate to B−1.

Such characters are sometimes called real characters.

16.9 Let a finite group � act on itself by conjugation. Find the character of this
permutation representation.

16.10 Let d : � → �!3 (C) be a representation of a finite group. Show that d is
irreducible if and only if there is no common eigenvector for the matrices d6 with
6 ∈ �.
16.11 a) Find four degree-1 representations of �4. Make a 4×8 table with the eight

6 ∈ �4 across the top and the values d6 in the body. Please put 4 on the left,
and place group elements in the same conjugacy class next to each other. (Hint:
What is the smallest � E �4 such that �4/� is abelian? You want the smallest
� E �4 with �4/� abelian because then �4/� has the largest possible order.)

b) Let R2 have the standard basis {e1, e2}. As usual with �4, let A rotate the plane
90◦ counterclockwise, and let B be the reflection that fixes e1 and sends e2 ↦→ −e2.
This defines a degree-2 representation d of the abstract group �4 = 〈A, B〉. Write
down the 2 × 2 matrices4 d6 for all 6 ∈ �4.

4 Our convention is to define representations over C. The 2×2 matrices are in�!2 (R) , but we can
simply regard them as elements of �!2 (C) . For this problem, R is used for easier visualization of
what is happening, but really it should be C.
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c) Argue that the degree-2 representation in the previous part is irreducible. (Hint:
What are the subspaces that are stable under B? Are all of those subspaces stable
under A? This idea is similar to using Theorem 16.5.)
Remark: �4 has five conjugacy classes and we have found five irreducible rep-

resentations. Therefore, we have found all of the irreducible representations (see
Theorem 16.15). Theorem 16.4 implies that every finite degree representation of �4
over C decomposes as a direct sum of copies of the five representations in a) and b).

16.12 a) Find four degree-1 representations of&8. Make a 4×8 table with the eight
6 ∈ &8 across the top and the values d6 in the body. Please put 4 on the left,
and place group elements in the same conjugacy class next to each other. (Hint:
What is the smallest � E &8 such that &8/� is abelian? You want the smallest
� E &8 with &8/� abelian because then &8/� has the largest possible order.)

b) Argue that Problem 9.7 can be used to construct a degree-2 representation of
&8.Write down the 2-by-2 matrices d(6) for all 6 ∈ &8.

c) Argue that the degree-2 representation in the previous part is irreducible. (Hint:
What are the subspaces that are stable under 8? Are all of those subspaces stable
under 9? This idea is similar to using Theorem 16.5.)
Remark: &8 has five conjugacy classes and we have found five irreducible rep-

resentations. Therefore, we have found all of the irreducible representations (see
Theorem 16.15). Theorem 16.4 implies that every finite degree representation of&8
over C decomposes as a direct sum of copies of the five representations in a) and b).

16.13 Let � act on a finite set - . Let d be the permutation representation associated
with this action on - . (See Definition 16.4)

a) Show that, for all 6 ∈ �, the trace of d6 (that is, character of 6) equals the
number of elements of - that are fixed by 6.

b) Complete this sentence: the trace in part a) is equal to the number of orbits of
〈6〉’s action on - that .

c) As a special case, let� act on itself by leftmultiplication, as inCayley’s Theorem.
The associated d is called the regular representation of �. Find Tr(d6) for all
6 ∈ �. (See Definition 16.3)

16.14 Let � = 〈0, 1〉, where 0 and 1 are independent commuting elements of
order 3 (so � � Z3 × Z3). Let l = 42c8/3. Make a table of all nine degree-1
representations of �. The table will have 9 rows and 9 columns, with the columns
labeled 4, 0, 02, 1, 01, 021, 12, 012, 0212. (Hint: Each representation is the product
of a representation of 〈0〉 and a representation on 〈1〉.)

16.15 Let � = Z8 × Z5. Show that there is a unique degree-1 representation d :
� → C× with d (1 2) = 42c8/40. Give an expression for d (0 1) for all 0 ≤ 0 < 8
and 0 ≤ 1 < 5. (Hint: There are a few ways to do this. If you are out of ideas, see
Example 6.3 but simplify the formula as much as you can (for example, two modulo
operations that can be combined into one).)
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16.16 This problem looks at the invariant scalar product. We consider two inner
products on R. The first is the standard dot product (consider vectors as column
matrices)

x · y = x)
[
1 0
0 1

]
y = G1H1 + G2H2,

and the second is

(v,w) = v) �w

where � is a symmetric positive-definite 2 × 2 matrix that we will define.

a) For 6 ∈ �!2 (R), show that (6v, 6w) = v) 6) �6w. State the analogue for 6x·6y.
From now on, let � = (3. Let d : � → �!3 (R) be the permutation representa-
tion of {e1, e2, e3}. We have shown in Example 16.7 that R3 � , ⊕ ,⊥ as an
orthogonal direct sum under the standard dot product., is the line spanned by
1
1
1

4 and,⊥ = {(G, H, I) | G + H + I = 0}. We also wrote down a basis {f1, f2}

of,⊥ and started to work out d, ⊥6 for 6 ∈ (3 as 2 × 2 matrices with respect to
this basis.

b) Compute

� =
1
|� |

∑
6∈�
(d, ⊥6 ))

[
1 0
0 1

]
(d, ⊥6 ).

Then (v,w) is an invariant scalar product.
c) Define | |v| |� =

√
(v, v), the �-length of v. We have seen that the three vectors[

1
0

]
5

,

[
0
1

]
5

,

[
−1
−1

]
5

are permuted by this representation. Find their �-lengths

and show they’re all the same.
d) Define the �-angle \� by (v,w) = | |v| |� | |w| |� cos \�. Show that the three

vectors in c) are all 120◦ away from each other in �-angle.
e) Using the d, ⊥6 found in the previous parts, calculate the character of d, ⊥ ,

call it std for standard. Together with the trivial representation and the sign
representation, conclude that the character table of (3 is as shown in Table 16.2.

By the way, since �3 � (3 from this problem one can conclude that the character
table for �3 is as shown in Table 16.3.

16.17 Let � be a field. Endow the vector space �= with the standard basis
{e1, · · · , e=}. Identify the linear maps �= → �< with the < × = matrices acting on
column vectors.
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Table 16.2: Character table of (3.

size 1 3 2
class 4 (••) (• • •)
triv 1 1 1
sgn 1 −1 1
std 2 0 −1

Table 16.3: Character table of �3.

size 1 3 2
class 4 B A

j (1) 1 1 1
j (2) 1 −1 1
j (3) 2 0 −1

a) Show that the set of all linear maps �= → �< is a vector space over �. It is
denoted Hom(�=, �<). Show that the space has dimension <=.
Let � = (3, d the permutation representation, and,,,⊥ as in Problem 16.16.

b) Consider the �-linear maps from d to d, that is, the g : �3 → �3 such that
g ◦ d6 = d6 ◦ g for all 6 ∈ �. Show directly from the definition that these g form
a two-dimensional subspace of Hom(�3, �3).

c) Show that,⊥ is irreducible. (Hint/Outline: Assume the contrary, that,⊥ has a
proper subspace {0} $ ,1 $ ,

⊥ which is stable under d, ⊥ . The matrix[
0 1
1 0

]
is d, ⊥ for some (which?) 6. This matrix limits you to only finitely many possi-
bilities for ,1. If some of the other matrices don’t stabilize those possibilities,
you have a contradiction.)

d) Use the previous part and Schur’s lemma to give a second proof that the dimen-
sion of the space of �-linear maps is two.

16.18 We know �4 is the group of rotations of the regular tetrahedron. Arguing in the
style of Problem 16.17 part (c), show that this degree-3 representation is irreducible.

16.19 Let + = C3 with basis {e1, e2, e3}. The tensor product + ⊗ + is a vector space
with a basis of nine elements. List them in lexicographic order

e1 ⊗ e1, e1 ⊗ e2, e1 ⊗ e3, e2 ⊗ e1, · · · .

a) List a basis of Sym(2) (+).
b) List a basis of Alt(2) (+).

Let � = 〈0〉 be cyclic of order 3. Let d : � → �! (+) be the regular represen-
tation, where
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d0 =


0 0 1
1 0 0
0 1 0

 .
For the following representations f of �, write the matrix f0 explicitly, using
the appropriate bases.

c) f ≡ d ⊗ d
d) f ≡ the representation on Sym(2) (+)
e) f ≡ the representation on Alt(2) (+)

Note: Once we find f0, we know f6 for any 6 ∈ � = 〈0〉 since � is cyclic. But f4
is the identity matrix always and since |� | = 3 this really only helps with one other
element: 02. We have f02 = (f0)2.

16.20 Let � be a finite group. Let q and k be characters of �. Show that qk is a
character of � as well, where (qk) (6) ≡ q(6)k(6) for all 6 ∈ �.

16.21 Let � be a finite or infinite abelian group. Let d : � → �! (+) be a repre-
sentation. Let dim+ be finite. Show, using Schur’s lemma, that if d is an irreducible
representation then dim+ = 1.

16.22 Let � be a finite group. Recall that / (�), the center of �, is

/ (�) = {G ∈ � | GH = HG,∀H ∈ �}.

a) Let j be the character of any irreducible representation d of �, where d has
degree 3. Let I ∈ / (�). Use Schur’s lemma to prove that |j(I) | = 3.

b) Let d : � → �! (+) be a faithful (that is, injective) representationwith character
j. Let I ∈ � and suppose |j(I) | = 3 for every character j of a faithful
irreducible representation of degree 3. Show that I ∈ / (�).

c) Prove that 32 ≤ |� |/|/ (�) |. (Hint: Let j be an irreducible character and use
(j |j) = 1 along with the first part of the problem.)

d) Let d : � → �! (+) be a faithful (that is, injective) representation. Show that
/ (�) must be a cyclic subgroup of �.

16.23 Table 16.4 shows the character table of (5, with parts left out.
In the top row, cycle shapes like (••) specify the conjugacy classes. Two letters %,&
label conjugacy classes and their sizes 0, 1 are missing.
Let sgn be the sign representation. Let d be the permutation representation on the
five coordinates of C5. Define std, the standard representation, to be the one where
d = triv ⊕ std. Either + is std and, is sgn ⊗ std, or vice-versa.
By a theorem about (= (which we didn’t prove), all the entries in the body of the
table are in Z.
Find %,&,+,,, 0, 1, 2, 3, 4, 5 , 6.

16.24 Let &8 = {1,−1, 8,−8, 9 ,− 9 , :,−:} be the group of quaternions. Recall that
82 = 92 = :2 = 8 9 : = −1.

a) Find the conjugacy classes of &8.
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Table 16.4: Character table of (5, with parts left out.

size 1 10 0 1 20 24 30
class () (••) % & (• • •) (••) (• • • • •) (• • ••)
triv 1 1 1 1 1 1 1
sgn 1 −1 2 3 −1 1 −1
+ 4 2 0 1 −1 −1 0
, 4 −2 0 1 1 −1 0

5 1 4 5 1 0 −1
5 −1 4 5 −1 0 1
6 0 −2 0 0 1 0

b) Show that # = {1,−1} is a normal subgroup of &8.
c) What group is &8/# isomorphic to? Why?
d) Use the previous part to obtain |&8/# | degree-1 representations of &8. (Hint:

See Corollary 16.3.)
e) Argue that Problem 9.7 can be used to construct a degree-2 representation of
&8.Write down the 2-by-2 matrices d(6) for all 6 ∈ &8.

f) Argue that the degree-2 representation in the previous part is irreducible. (Hint:
What are the subspaces that are stable under 8? Are all of those subspaces stable
under 9? This idea is similar to using Theorem 16.5.)

g) Construct the character table of &8.

16.25 Let d : � → �! (+) be a linear representation with character j and dim+

finite. Let + ′ be the dual of + (that is, the space of linear forms on +). For v ∈ + and
v′ ∈ + ′ let 〈v′, v〉 denote the value of the linear form v′ at v.

a) Show that there exists a unique linear representation d′ : � → �! (+ ′) such
that

〈d′6v′, d6v〉 = 〈v′, v〉

for ∀6 ∈ �,∀v ∈ +,∀v′ ∈ + ′. This is known as the contragredient or dual
representation of d.

b) What is the character j′ of the contragredient (or dual) representation of d in
terms of the character j?

16.26 Table 16.5 shows the character table of (4. This problemwill walk you through
the derivation of this character table.

a) Prove that the "class" row includes all the conjugacy classes of (4. (See Theorem
9.1 for a reminder of the conjugacy classes of (=.)

b) Prove that the "size" row should indeed be [1, 6, 3, 8, 6] . (This is given in Table
9.1, but make sure you understand each of these steps so that you understand the
derivation of the character table of (4 fully.)

c) (4/+ � (3, where + is the Klein 4-group generated by, say, (1 2) (3 4). The
character table of (3 was found in Problem 16.16. Those representations pull
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Table 16.5: Character table of (4.

size 1 6 3 8 6
class 4 (••) (••) (••) (• • •) (• • ••)
triv 1 1 1 1 1
sgn 1 −1 1 1 −1
\ 2 0 2 −1 0
k 3 1 −1 0 −1
n k 3 −1 −1 0 1

back under the quotient map (4 → (4/+ to give representations of (4. Show
that they give the top three rows of the character table of (5.

d) (4 is the group of rotations of the octahedron. This is a degree-3 representation
d of (4. Every nontrivial element is a rotation around some axis through some
angle 2c/: for some : ∈ Z+.What is the trace of such a rotation? For finding the
trace, why does it not matter what the axis is? Apply this to each conjugacy class,
and show that the character of d is the one the table calls nk. The representation
is irreducible because no line or plane is preserved by all of the rotations. As a
second proof that d is irreducible, show that (nk |nk) = 1.

e) We now construct k. Let, be a vector space with basis {e1, · · · , e4}.Give, the
permutation representation where (4 permutes the e8 . Find the character of,.
The line,1 spanned by e1 +e2 +e3 +e4 is stable and is the trivial representation.
The orthocomplement ,⊥1 is the standard representation. Show that (character
of ,) minus (trivial character) equals k. Show that (k |k) = 1, which proves
that,⊥1 is irreducible.

f) Describe the degree-3 representation whose character is k. Formally, it is sgn ⊗
(representation in part 3), but what is it geometrically?

16.27 Let’s work out the character table of �5.

a) List the conjugacy classes of �5.
b) Start the character table with the trivial representation.
c) �5 is the rotation group of the icosahedron. Work out the character q of this

degree-3 representation in the manner of the second part of Problem 16.26.
d) In �5, conjugation by an odd permutation gives an automorphism of �5 that is

not an inner automorphism (we call it an outer automorphism). Compose the
representation in the previous part with such an outer automorphism to get a
different degree-3 representation q′. Verify that (q′ |q′) = 1 and (q|q′) = 0.

e) Consider the permutation representation on a basis {e1, e2, e3, e4, e5}. Split off
the trivial line through e1 + e2 + e3 + e4 + e5 to obtain a degree-4 standard
representation with character k. Verify that (k |k) = 1.

f) You now have four rows of a five-row table. Before finding the fifth row, how
does Corollary 16.6 tell you what the degree of the fifth row must be?

g) Find the fifth row.
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16.28 At the end of Problem 16.27, you found a character of �5 without knowing
what the representation was. Show that the representation is obtained by removing
the trivial representation from the permutation representation of �5 on the set of its
six subgroups of order five.

16.29 Let d : � → �! (+) be a representation with character j. Proposition 16.13
shows that + ⊗+ has character j2. That is, the character j (⊗) of + ⊗+ is j (⊗) (6) =
j(6)j(6) for every 6 ∈ �. Similarly, the :-th tensor power + ⊗: = + ⊗ · · · ⊗+ with
: copies of + has character j: . (To be clear, j: means (j: ) (6) = (j(6)): for any
6 ∈ �.)

a) Let � = �4 and let d : � → �! (+) be the irreducible degree-3 representation
of �4. By adding up rows of the character table, show that + ⊗2 is a direct sum
of one copy of each of the degree-1 representations, plus two copies of +.

b) With d as in the previous part, give a general formula for + ⊗: as a direct sum of
(how many?) copies of the four irreducibles.

Note: A plethysm is when we build a new representation from old ones by an
algebraic construction, then identify the irreducible constituents in the new one. The
special case of + ⊗, is called the Clebsch-Gordan problem.

16.30 Let d : (3 → �! (+) be the standard representation, with basis {e1, e2} so
that

d (1 2 3) =

[
0 −1
1 −1

]
, d (1 2) =

[
0 1
1 0

]
.

Let, = + ⊗ +, with basis {e8 ⊗ e 9 |1 ≤ 8, 9 ≤ 2} in lexicographic order.

a) Use characters to show that

, � ,1 ⊕,2 ⊕,3,

one copy of each of the trivial, sign, and standard representations of (3.
b) Write down the 4 × 4 matrices (d ⊗ d)6 for all 6 ∈ (3.

16.31 Let - be a finite set on which a finite group � acts on; call the action
q : � → (- . Let jq be the character of the permutation representation d (q)

associated with the action q.

a) Recall that Orb(G) = {q6 (G) |6 ∈ �} is called the orbit of G ∈ -. Let #>A1 be
the number of distinct orbits. Show that #>A1 is equal to the number of times
that d (q) contains the trivial representation. Conclude that (jq |jCA8E ) = #>A1 .
In particular, if the action is transitive (that is, #>A1 = 1. See Definition 11.4),
d (q) can be decomposed into triv ⊕ \ where \ does not contain the trivial
representation. Letting j\ be the character of \, then we have jq = jCA8E + j\
and (j\ |jCA8E ) = 0.

b) Let � act on the product - × - by the action k : � → (-×- defined by
k = q × q. That is, k6 ((G, H)) = (q6 (G), q6 (H)) for any 6 ∈ �. Show that the
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character of the corresponding permutation representation d (k) associated with
the action k is equal to j2

q
. That is, jk (6) = jq (6)2 for any 6 ∈ �.

c) Suppose that the action q is transitive on - and that - has at least two elements.
We say that q is doubly transitive if q is not only transitive but also for all
G, H, G ′, H′ ∈ - with G ≠ H and G ′ ≠ H′ there exists B ∈ � such that G ′ = qB (G)
and H′ = qB (H). Prove the equivalence of the following properties:

i) The action q is doubly transitive.
ii) The action k on - × - has two orbits: the diagonal and its complement.
iii) (jk |jCA8E ) = (j2

q
|jCA8E ) = 2.

iv) The representation \ in part a) is irreducible. (Hint: Showing that

(j2
\ |jCA8E ) = (j\ |j\ )

might be useful.)

16.32 Let � be a finite group, and let �̂ be the set of degree-one representations of
� over C.

a) If j1, j2 belong to �̂, show that the same is true of their product j1j2. (By
j1j2, we mean that (j1j2) (6) = j1 (6)j2 (6) for 6 ∈ �.) Show that this makes
�̂ an abelian group. The group �̂ is called the dual of the group �.

b) Show that |�̂ | = |� |.
c) For G ∈ � show that the mapping �̂ → C defined by j ↦→ j(G) is a degree-

1 representation of �̂. Therefore, it is an element of the dual ˆ̂
� of �̂ (the

double dual of �). Show that the map � → ˆ̂
� thus obtained is an injective

homomorphism. Conclude (by comparing the orders of the two groups) that it
is surjective as well and, hence, an isomorphism � � ˆ̂

�.

16.33 Let d : � → �! (+) be a representation and let # E �.

a) If # ≤ ker d, show that there is a unique representation d̃ : �/# → �! (+)
defined by d̃(6#) = d(6) for all 6 ∈ �.

b) Show that d̃ is irreducible if and only if d is irreducible.
c) (If you did Problem 16.11) Let � = �4 and # = 〈A〉. Of the five representations

in Problem 16.11, which satisfy # ≤ ker d? For those that do, write out what d̃
is.



Chapter 17
Induced Representations

Abstract This chapter covers induced representations.

17.1 Induced Representations

Let � be a group and let � be a subgroup of �. Let us consider �/� with [� :
�] = : . Pick coset representatives A1, · · · , A: . That is,

A1�, · · · , A:� (17.1)

are the : (distinct) cosets that form a partition of the group�. Let d : � → �! (+) be
a representation for�. Ifwe restrict d to�, denote this as d� , then d� : � → �! (+)
is a representation of �. Suppose that there is a vector subspace , ⊆ + such that
, is �-stable. Recall that this means that dG, = , for any G ∈ �. What if G ∉ �?
Since �/� is a partition of �, we know that any G ∈ � can be written as G = A 9ℎ
for some coset representative A 9 and some ℎ ∈ �. We then get that

dG, = dA 9ℎ, = dA 9 dℎ, = dA 9,, (17.2)

where the last equality used the assumption that , ⊆ + was �-stable. Therefore,
dG, depends only on which coset of � in� the element G belongs to. If we consider
the sum of the vector subspaces

dA1,, · · · , dA:,, (17.3)

let us call the result + ′, then we see that it is �-stable since d6 for 6 ∈ � sends
each dA 9, to d6dA 9, = dA0, where A0 is the coset representative of the coset to
which 6A 9 belongs to. This gives a subrepresentation d : � → �! (+ ′). We say
that the representation d : � → �! (+) is induced by \ if this subrepresentation
+ ′ = + , with + is not just equal to + ′ but rather + is a direct sum of the subspaces
dA1,, · · · dA:, .

203
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Definition 17.1 Let d : � → �! (+) be any representation. Let � be a subgroup
of �. By restriction, we have a representation d� : � → �! (+). Suppose that
there is a vector subspace , ⊆ + which is �-stable. Let \ : � → �! (,) be this
representation. We say d is induced from \ if

+ =

:⊕
9=1

dA 9,.

We write d = Ind�� \ or + = Ind�� , when d is induced from \.

See Figure 17.1 for some visual intuition for what it means to be an induced
representation.

Fig. 17.1: Pictures to help visual what an induced representation means.

Perhaps some examples will make things more clear.

Example 17.1 Let � be a finite group. Let dA46 : � → �! (+) be the regular
representation of � (see Definition 16.3, if needed). Then the basis for + is labeled
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by eG for ∀G ∈ � and dA46G eH = eGH for all G, H ∈ �. Let � be a subgroup of �.
Let , be the subspace spanned by eG for G ∈ �. Then we have a representation
\ : � → �! (,), which is actually the regular representation of �. But dA46 is
induced by the representation \. Why? Suppose [� : �] = : and |� | = <. Pick
coset representatives A1, · · · , A: so that

A1�, · · · , A:� (17.4)

form a partition of �. Without loss of generality, suppose A1 = 4 so that A1� = 4�.
A basis for + in the regular representation is

{eA1ℎ1 , eA1ℎ2 , · · · , eA1ℎ<︸                      ︷︷                      ︸
spans A1� part of V

, eA2ℎ1 , eA2ℎ2 , · · · , eA2ℎ<︸                      ︷︷                      ︸
spans A2� part of V

, · · · , eA:ℎ1 , eA:ℎ2 , · · · , eA:ℎ<︸                       ︷︷                       ︸
spans A:� part of V︸                                                                                            ︷︷                                                                                            ︸

spans � part (that is, all) of +

}.

(17.5)

In this notation,, (the subspace that is �-stable) is the subspace spanned by

{eA1ℎ1 , eA1ℎ2 , · · · , eA1ℎ< } = {eℎ1 , eℎ2 , · · · , eℎ< }, (17.6)

since, without loss of generality, we are choosing A1� = 4� by choosing A1 = 4.
What is dA46A2 ,? Well, dA46A2 , is the subspace of + that is spanned by

{dA2eℎ1 , dA2eℎ2 , · · · , dA2eℎ< } = {eA2ℎ1 , eA2ℎ2 , · · · , eA2ℎ< }, (17.7)

which we see is the subspace of + that is spanned by the vectors corresponding to
A2�. Continuing the argument, we see that

+ = d
A46
A1 , ⊕ dA46A2 , ⊕ · · · ⊕ dA46A: , =

:⊕
9=1

d
A46
A 9 ,. (17.8)

That is, + = Ind�� , (also written as dA46 = Ind�� \). In words: the regular repre-
sentation of � is induced by the regular representation of a subgroup � of �.

The previous example can be generalized a bit.

Example 17.2 Let� be a finite group and let� be a subgroup of�. Let [� : �] = :.
Pick coset representatives A1, · · · , A: so that

A1�, · · · , A:� (17.9)

form a partition of �. Without loss of generality, suppose A1 = 4 so that A1� = 4�.
Define + as the vector space spanned by the linearly independent vectors

eA1� , · · · , eA:� . (17.10)
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That is, we associate a basis vector to each distinct left coset of � in �. Let
d : � → �! (+) to be the representation of � defined by d6eA8� = e6A8� . This
is the permutation representation of � associated with �/� where the action is
left translation of cosets (see Definition 16.4, if necessary) . Let, be the subspace
spanned by eA1� = e4� . Then, = Ce4� . , is �-stable since dℎe4� = eℎ� = e4�
for any ℎ ∈ �. Therefore, we have a representation \ : � → �! (,). Notice that
dA8, is a vector space spanned by dA8e4� = eA8� . It is then clear that

+ = dA1, ⊕ dA2, ⊕ · · · ⊕ dA:, =

:⊕
9=1

dA 9,. (17.11)

That is, + = Ind�� , (also written as d = Ind�� \).

Use notation as above. Given that d and \ are related to one another, is there a
formula relating the characters jd, j\ of d, \, respectively?

Theorem 17.1 If a representation d is induced d = Ind�� \ (or + = Ind�� ,), then

jd (D) =
∑
A ∈'

such that
A−1DA ∈�

j\ (A−1DA),

where ' is a set of coset representatives of �/�.

Proof Suppose [� : �] = : and let ' be a set of coset representatives ' =

{A1, · · · , A: }. Choose an ordered basis for+ as follows: choose a basis of dA1,, then
a basis of dA2, , etc... Fix D ∈ �. Let A 9 ∈ ' be arbitrary. What does dD do to the
subspace dA 9,? That is, what is dDdA 9, = dDA 9,? We know DA 9 belongs to some
coset in �/�. Therefore, there exists ℎ 9 ∈ � and A8 ∈ ' such that DA 9 = A8ℎ 9 . If
8 ≠ 9 , then

A−1
8 DA 9 = A

−1
8 A 9ℎ 9 ≠ 4ℎ 9 . (17.12)

In particular, A8 = A 9 if and only if A−1
8
DA 9 ∈ �. There are two cases to consider.

i) If 8 = 9 , then A−1
8
DA 9 = A

−1
9
DA 9 ∈ � and

dDdA 9, = dDA 9, = dA8ℎ 9
, = dA8 dℎ 9

, = dA8, = dA 9,, (17.13)

where we have used the fact that , is �-stable. Therefore, dD sends dA 9, to
dA 9, and so is nonzero in the block corresponding to the subspace dA 9,. This
is along the diagonal so it contributes to Tr(dD). More visually:
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dD =

· · · dA 9, · · · · · · · · ·



? 0 ? ? ?
...

? ∗ ? ? ? dA8, = dA 9,

? 0 ? ? ?
...

? 0 ? ? ?
...

? 0 ? ? ?
...

(17.14)

where ∗ denotes nonzero terms. Since that block is along the diagonal, it con-
tributes to the trace.

ii) If 8 ≠ 9 , then A−1
8
DA 9 ∉ � and

dDdA 9, = dDA 9, = dA8ℎ 9
, = dA8 dℎ 9

, = dA8, ≠ dA 9,, (17.15)

where we have used the fact that , is �-stable. Therefore, dD sends dA 9, to
dA8, ≠ dA 9,. This is off-diagonal and so contributes zero to Tr(dD). More
visually:

dD =

· · · dA 9, · · · dA8, · · ·



? 0 ? ? ?
...

? 0 ? ? ? dA 9,

? 0 ? ? ?
...

? ∗ ? ? ? dA8,

? 0 ? ? ?
...

(17.16)

where ∗ denotes nonzero terms. Since that block is off-diagonal, it contributes
zero to the trace. �

Thus, we need to find the contribution to Tr(dD) for A 9 ∈ ' such that A−1
9
DA 9 ∈ �.

Let Tr(dD) |dA 9, be a partial trace of dD , where we only trace over the subspace
corresponding to dA 9,. That is, we restrict dD to the subspace dA 9, and take the
trace of that part only. Thus,

jd (D) =
∑

9=1, · · · ,:
such that
A−1
9
DA 9 ∈�

Tr(dD) |dA 9, . (17.17)

However, if 8 = 9 , then

dDdA 9 = dA 9 d
−1
A 9
dDA 9 = dA 9 dA−1

9
DA 9
. (17.18)
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Let us restrict to,. Also, A−1
9
DA 9 ∈ � and, by definition of induced representation,

dℎ restricted to , is equal to \ℎ for any ℎ ∈ �. Therefore, dA−1
9
DA 9

= \A−1
9
DA 9
.

Therefore,

dD |dA 9, dA 9 = dA 9 d
−1
A 9
dDA 9 = dA 9 \A−1

9
DA 9
. (17.19)

Thus, we see that Tr(dD) |dA 9, = Tr(\ (A−1
9
DA 9 )) = j\ (A−1

9
DA 9 ) so that

jd (D) =
∑

9=1, · · · ,:
such that
A−1
9
DA 9 ∈�

j\ (A−1
9 DA 9 ) =

∑
A ∈'

such that
A−1DA ∈�

j\ (A−1DA). (17.20)

Corollary 17.1 If a representation d is induced d = Ind�� \ (or + = Ind�� ,), then

jd (D) =
1
|� |

∑
6∈�

such that
6−1D6∈�

j\ (6−1D6).

Proof This follows because � = A1� ∪ · · · ∪ A:�, the fact that each coset has the
same cardinality (Corollary 7.3), and that characters are class functions (Theorem
16.2). Let ' be a set of coset representatives of �/�. Therefore,∑

6∈�
such that
6−1D6∈�

j\ (6−1D6) =
∑
A ∈'

such that
(Aℎ)−1D (Aℎ) ∈�

∑
ℎ∈�

j\ ((Aℎ)−1D(Aℎ)) (17.21)

=
∑
A ∈'

such that
(Aℎ)−1D (Aℎ) ∈�

∑
ℎ∈�

j\ (ℎ−1A−1DAℎ)

=
∑
A ∈'

such that
(Aℎ)−1D (Aℎ) ∈�

∑
ℎ∈�

j\ (A−1DA)

=
∑
A ∈'

such that
A−1DA ∈�

∑
ℎ∈�

j\ (A−1DA)

=
∑
A ∈'

such that
A−1DA ∈�

|� |j\ (A−1DA)

where for the fourth equality we used the fact that A−1DA ∈ � if and only if
ℎ−1A−1DAℎ = (Aℎ)−1D(Aℎ) ∈ � since � is a subgroup of � and hence is closed
under the binary operation (which we call multiplication, in multiplicative notation).
Therefore,
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jd (D) =
∑
A ∈'

such that
A−1DA ∈�

j\ (A−1DA) = 1
|� |

∑
6∈�

such that
6−1D6∈�

j\ (6−1D6), (17.22)

as claimed. �

A good question to ask is the following: When is an induced representation
irreducible? If j\ is an irreducible character, this does not mean that jd is also an
irreducible character. A standard thing to prove would be Mackey’s irreducibility
criterion, which gives conditions that are necessary and sufficient for an induced
representation to be irreducible. We will not cover this here, as more machinery is
needed to really do the derivation justice.

17.2 Motivation For Problem 17.2

Problem 17.2 is rather abstract. We add a section with an example to give intuition
for what that problem is about. The notation below is in accordance with the notation
set in Problem 17.2. Read this section when you are preparing to solve part d) of the
problem.

Let � = (3. Let � = 〈(1 2 3)〉. Let, = C and q = 42c8/3. Then \ : (1 2 3) ↦→ q

is a representation of �. Suppose 5 (4) = 0. Then

5 ((1 2 3)4) = \ (1 2 3) 5 (4) = q0 (17.23)

5 ((1 2 3)24) = \ (1 2 3)2 5 (4) = (\ (1 2 3) )2 5 (4) = q20. (17.24)

Suppose 5 ((1 2)) = 1. Then

5 ((1 3)) = 5 ((1 2 3) (1 2)) = \ (1 2 3) 5 ((1 2)) = q1 (17.25)

5 ((2 3)) = 5 ((1 3 2) (1 2)) = \ (1 3 2) 5 ((1 2)) = q21. (17.26)

A generic function 5 therefore looks like

5 (G) 0 q0 q20 1 q1 q21

G 4 (1 2 3) (1 3 2) (1 2) (1 3) (2 3)
Consider F = 0.

50 (G) 0 q0 q20 0 0 0
G 4 (1 2 3) (1 3 2) (1 2) (1 3) (2 3)

Next, let’s work out (d (1 2) 51) (D) = 51 (D(1 2)).But 4(1 2) = (1 2), (1 2 3) (1 2) =
(1 3), (1 3 2) (1 2) = (2 3), (1 2) (1 2) = 4, (1 3) (1 2) = (1 2 3), (2 3) (1 2) = (1 3 2).
This gives

(d (1 2) 51) (G) 0 0 0 1 q1 q21

G 4 (1 2 3) (1 3 2) (1 2) (1 3) (2 3)
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We see that any "generic" 5 in the problem can be written as 5 = 50 + d (1 2) 51 =

d4 50 + d (1 2) 51 . Therefore, + = Ind�� , (or d = Ind�� \).

Problems

17.1 Show that each irreducible representation of � is contained in a representation
induced by an irreducible representation of �. Use the fact that an irreducible
representation is contained in the regular representation at least once.

17.2 Let � be a group. Let \ : � → �! (,) be a linear representation of � ≤ �.
Let + be the vector space of functions 5 : � → , such that 5 (CD) = \C 5 (D) for
D ∈ �, C ∈ �. That is,

+ = { 5 : � → , | 5 (CD) = \C 5 (D) for ∀D ∈ �,∀C ∈ �}.

Let d be the representation of � in + defined by (dB 5 ) (D) = 5 (DB) for any B, D ∈ �.
For F ∈ , let 5F ∈ + be defined by 5F (C) = \CF for C ∈ � and 5F (C) = 0 for C ∉ �.
a) Show that if 5 (1) , 5 (2) ∈ + and U ∈ C, then 5 (1) + U 5 (2) ∈ + .
b) Show that d as defined above is indeed a representation. That is, show that
((dBdC ) 5 ) (D) = (dBC 5 ) (D) for any B, C, D ∈ � and 5 ∈ + .

c) Show that F ↦→ 5F is an isomorphism (in the vector space sense, see the
clarifying note after Definition 16.10) of, onto the subspace,0 of+ consisting
of functions which vanish off �. That is,

,0 = { 5 : � → , | 5 (B) = 0 for B ∉ �}.

d) Show that, if we identify , and ,0 in this way, the representation d : � →
�! (+) is induced by the representation \ : � → �! (,).

17.3 Let � = �4 and let � E � be the Klein 4-group within �.
a) Write down the character table of �4. Reconstruct it using methods from the

previous chapter, if needed. Put the trivial character on top as usual. Put charac-
ter(s) of degree greater than 1 below those of degree 1. Label the characters j0,
j1, · · · , from top to bottom. Let d0, d1, · · · , be the corresponding irreducible
representations.

b) To check the work in a), please do two computations: find the product (j8 |j8) of
the bottom-most character, and the product of the bottom-most character with
the second one from the bottom.

c) Write down the character table of �. Label its characters k0, k1, · · · .
d) For each k8 , compute the character q8 of the induced representation Ind�� k8 .

Decompose each q8 as a sum of irreducibles for �4. Which q8 is irreducible?
When are the q′

8
s the same for different k8?

17.4 Let \ be a representation of �5. Suppose its character has the values D, . . . , H
as in Table 17.1.
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Table 17.1: The character of \, a representation of �5.

4 (••) (••) (• • •) (1 2 3 4 5) (1 2 3 5 4)
D E F G H

a) Find the character of Ind(5
�5
\ in terms of D, . . . , H.Write it out as a row of a table

like the one in Table 17.2. The first two entries have been filled in for you.

Table 17.2: The character of Ind(5
�5
\ in terms of D, . . . , H.

4 (••) (••) (••) (• • •) (• • ••) (• • • • •) (••) (• • •)
2D 0

b) Let \CA8E be the trivial representation of �5. Let dCA8E and dB6= be the trivial
and sign representations of (5, respectively. Show that

Ind(5
�5
\CA8E � dCA8E ⊕ dB6=.

c) Generalizing the previous part, let \ be an irreducible representation of �5 whose
character satisfies the condition G = H. Show that Ind(5

�5
\ is the direct sum of

two different irreducible representations of (5. If one of these is f, show that
the other is f ⊗ (what?).

17.5 Let d : � → �! (+) be a representation of a finite group � on a finite-
dimensional vector space +. Suppose there is an element G ∈ � such that dG = −�;
that is, dG (v) = −v for any v ∈ +.

a) Let d′ = d ⊗ d be the representation on Sym(2) (+) defined by d. Find d′G , with
proof.

b) With G as above, show that no irreducible representation of � occurs as a direct
summand of both + and Sym(2) (+) (more precisely, as a summand of both d
and d′).

Note: If � acts on a solid body by rotations and reflections, we say the body is
centrally symmetric if −� is part of the action. The tetrahedron is not centrally
symmetric, but the other four Platonic solids are, as is the buckyball. Part b) is an
example of a general effect in spectroscopy called the exclusion rule: For a molecule
with a center of symmetry (sometimes called an inversion center), bonds that are
active in the infrared will not be Raman-active and vice versa. That is, Raman shifts
and infrared frequencies do not coincide.

17.6 This problem is similar to Problem 16.24.
Let � = &8 = {1,−1, 8,−8, 9 ,− 9 , :,−:} be the group of quaternions. Recall that
82 = 92 = :2 = 8 9 : = −1.
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a) Find the conjugacy classes of �.
b) Find the center / (�).
c) What group is �// (�) isomorphic to? Why?
d) Use the previous part to obtain |�// (�) | degree-1 representations of&8. (Hint:

See Corollary 16.3.) Write down the first several rows of the character table of
�. How many row(s) do you still need in order to complete the character table
for �? (Leave room for that.)
• Recall that the quaternions are the divison ring

H = {0 + 18 + 2 9 + 3: | 0, 1, 2, 3 ∈ R}.

This is a 4-dimensional vector space over R. The group � acts on H by left
translation. For instance, 8 acts by

8 · (0 + 18 + 2 9 + 3:) = −1 + 08 − 39 + 2:.

This left translation action is a representation d : � → �!4 (R).
e) Find the character j of d.
f) Show that j is orthogonal to all the characters in the table for � so far. Find
(j |j). Is d irreducible?

g) Let k = 1
2 j. Prove that this must be what completes the table for �. Put it into

the character table.
h) Construct a representation d : � → �!2 (C) whose character is k as an induced

representation f = Ind�� \ with � = 〈8〉 and \ = (what?). Find the 2×2 matrices
f8 , f9 , f: .



Chapter 18
Pop Quiz on Part 2

Abstract In this chapter, we present a list of qualitative questions about the content
of Part 2 in order to help readers test their understanding of (what we consider) the
big, take-away ideas.

18.1 Important Questions on Part 2

• What is a linear representation of a group?
• What does it mean for two representations to be equivalent/isomorphic?
• What is an irreducible representation?
• What is a regular representation? Is it always irreducible?
• What is permutation representation? Is it always irreducible?
• Is there a relationship between regular representations and permutation repre-
sentations in cases when � is a finite group?

• Describe Weyl’s unitary trick. (Why is it useful? Can you recall/sketch the main
idea(s) of the proof?)

• Describe Schur’s Lemma. (Can you recall/sketch the main idea(s) of the proof?)
• What is the character of a linear representation?What are some of the properties
that characters have? (Can you recall/sketch the main idea(s) of the proof?)

• What is a character table?
• What sort of properties does the character table have (its rows? columns?). Can
you describe how to derive/prove those properties?

• Describe a relationship between characters and linear representations.
• What is an induced representation?
• What is a useful formula for the character of an induced representation?
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Part III
Applications



Part I and II covered the necessary definitions and theorems as preparation for the
discussion of applications of group theoretic ideas in other fields.



Chapter 19
Noether’s Theorem

Abstract In physics, conserved quantities can often be deduced by looking at the
symmetries of the system. Noether’s theorem suggests a systematic way for finding
what the conserved quantity is in the case of a continuous symmetry.

19.1 Symmetries and Conservation Laws

In physics, one has the feeling that if a physical system has a symmetry then maybe
there is some quantity which is somehow related to this symmetry. If there is indeed
such a quantity, we would like to know how to find it, assuming we know what the
symmetry is. Without a systematic method, finding the quantity can be similar to
looking for a needle in a haystack.

In this part when we say symmetry we understand it to mean global symmetry.
That is, it is a symmetry possessed by the entire system. One can also have local
symmetry, and a slightly different discussion applies in that case.

19.2 Invariance and Conservation

Before proceeding, let’s formalize some ideas. A quantity of a system is invariant if
it takes the same value after a transformation has been applied to the system.

Example 19.1 A translationally invariant system looks the same after a translation.

Example 19.2 A rotationally invariant system looks the same after a rotation.

Example 19.3 Electric charge is a Lorentz invariant because the value does not
changewhen viewed fromdifferent inertial reference frames. (This is an experimental
observation.)

217
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On the other hand, a quantity is conserved if its value does not change as a function
of time. In physics, the difference is that a quantity can be conserved in a particular
inertial reference frame but not be invariant.

Example 19.4 For thosewith a physics background, the 4-momentum ?` = (�/22, p)
is a conserved quantity. However, it is not Lorentz invariant. In fact, it is a Lorentz
vector so in a different (call it primed) frame the quantity is ?′` = !`a ?a when !

`
a

describes a Lorentz transformation.

19.3 The Euler-Lagrange equations

Consider the following combination of kinetic ()) and potential (+) energies:

! ≡ ) −+. (19.1)

This ! is called the Lagrangian. You are most likely used to seeing the combination
) + + in your introductory physics, which is the total energy. Consider a mass <
attached to a spring with spring constant :. We model this with ) = < ¤G2/2 and
+ = :G2/2 so that

! =
1
2
< ¤G2 − 1

2
:G2. (19.2)

Now consider the following equation:

3

3C

(
m!

m ¤G

)
=
m!

mG
. (19.3)

This equation is called the Euler-Lagrange (E-L) equation. For now, don’t worry
where this combination comes from. For the mass on a spring, we have m!/m ¤G = < ¤G
and m!mG = −:G so that Equation 19.3 gives

< ¥G = −:G. (19.4)

This equation is precisely what you would get if you applied Newton’s equation
� = <0 to the system. If there are more degrees of freedom, you apply the (E-L)
equation to each additional variable.

Of course, this example is quite simple so this may appear to only be a happy little
accident. Consider a slight generalization of our example, and suppose that instead
of a spring we had an arbitrary potential + (G). Then

! =
1
2
< ¤G2 −+ (G) (19.5)

and the E-L equation gives
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< ¥G = −3+
3G
. (19.6)

However, the negative of the derivative of the potential energy gives the force acting
on the object, so once again this gives � = <0. Generalizing to three spatial
dimensions, we have + (G, H, I) and

! =
1
2
<( ¤G2 + ¤H2 + ¤I2) −+ (G, H, I) (19.7)

so the the E-L equations give

<¥x = −∇+. (19.8)

Once again, −∇+ = F so this gives Newton’s second law F = <a.
In a classical mechanics course, one would do many more examples and see that

this is not an accident but another way to do classical mechanics that is equivalent to
Newton’s formulation. A benefit of this Lagrangian formulation of classical mechan-
ics is that the involved quantities are scalars.), the kinetic energy, is a scalar and is+,
the potential energy. For more complicated systems, the Lagrangian formalism is a
quite a bit easier as one does not need to worry about the vector nature of forces. This
helps minimize errors due to signs. Once you get ),+ you plug them into the E-L
equations and the equations will be the same as the more tedious Newton method.

19.4 The Principle of Stationary Action

Consider the following quantity:

( ≡
∫ C2

C1

! (G, ¤G, C)3C. (19.9)

This ( is called the action. In SI units, ( has units of (energy)×(time), which is the
same units as angular momentum. ( depends on !,which depends on G(C).Given any
function G(C), one can compute the relevant ! and, hence, the relevant (. Integrals
such as ( are called functionals and ( is sometimes denoted ([G(C)] to remind us of
the fact that ( depends on G(C). That is, G(C) depends on one input C whereas ([G(C)]
needs the entire function G(C) in order to be calculated. If you want, you can think
of ( as a function that depends on infinitely many values, which we label by G(C).
If you feel uneasy about infinites, imagine breaking up the time interval [C1, C2] into
pieces and then the integral can be approximated by a discrete sum.

Now suppose that G(C) is fixed at the end points G(C1) = G1 and G(C2) = G2 but is
otherwise arbitrary. What function G(C) leads to a stationary value of (? A stationary
value, like the calculus the reader is familiar with, is a minimum, maximum, or a
saddle point.
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Theorem 19.1 If the function GB (C) is fixed at the endpoints (GB (C1) = G1, GB (C2) = G2)
and yields a stationary value of ([G(C)] then it satisfies

3

3C

(
m!

m ¤GB

)
=
m!

mGB
.

Again, it is understood that we are considering the class of functions whose endpoints
are fixed.

Proof If ([G(C)] is stationary at GB (C) then this means that any other function close
to GB (C) and satisfying the same conditions at the endpoints should have the same
value as ([GB (C)], to first order in the deviation.

Suppose that ([G(C)] is stationary at GB (C). Consider a function

GB (C) ≡ GB (C) + nX(C), (19.10)

where X(C) is some deviation from GB (C) that satisfies X(C1) = 0 and X(C2) = 0. Now,
notice that

m

mn
([G(C)] = m

mn

∫ C2

C1

!3C

=

∫ C2

C1

m!

mn

=

∫ C2

C1

(
m!

mG

mG

mn
+ m!
m ¤G

m ¤G
mn

)
3C. (19.11)

We have that

mG

mn
= X (19.12)

mG

mn
= ¤X, (19.13)

so that

m

mn
([G(C)] =

∫ C2

C1

(
m!

mG
X + m!

m ¤G
¤X
)
3C. (19.14)

Integrate that second-term by parts, to get

m

mn
([G(C)] =

∫ C2

C1

X ·
(
m!

mG
− 3

3C

m!

m ¤G

)
3C + m!

m ¤G
¤X |C2C1 . (19.15)

Since X(C1) = X(C2) = 0, the boundary terms vanish and we find that

m

mn
([G(C)] =

∫ C2

C1

X ·
(
m!

mG
− 3

3C

m!

m ¤G

)
3C. (19.16)
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By assumption, ( is stationary at GB (C) which means that m(/mn = 0 when evaluated
at n = 0. Therefore,

0 =
∫ C2

C1

X

(
m!

mG
− 3

3C

m!

m ¤G

)
3C (19.17)

for any X at n = 0. This means that

m!

mGB
− 3

3C

m!

m ¤GB
= 0. (19.18)

�

We see that the Euler-Lagrange equation isn’t unmotivated. It follows by looking
for an G(C) for which ([G(C)] is stationary. Therefore, we can replace the � = <0

mantra familiar from high school physics with the following principle.

• The principle of stationary action: The path G(C) of a particle observed in
classical mechanics is the one that yields a stationary value of the action ([G(C)] .

This principle is sometimes called Hamilton’s principle. It is equivalent toF = <a
since, by reading the proof of backwards, one can see that the Euler-Lagrange
equations hold for G(C) if and only the action ( is stationary for G(C) and, as we
have tried to motivate, the Euler-Lagrange equations are equivalent to � = <0. If
there are more variables G1 (C), . . . , G= (C) then the principle of stationary action is
still applicable. The E-L equation could for each G8 (C) and each such equation is
equivalent to the corresponding component of F = <a equation.

Of course, all this does is change the question of "Where does the Euler-Lagrange
come from?" to "where does the principle of stationary action come from?"We leave
such discussions to the physics textbooks.

By the way, we have been using Cartesian coordinates, but actually one can show
that any change of basis from {G8} to {@8} still requires the E-L equations to be
satisfied. That is, if

3

3C

(
m!

m ¤G8

)
=
m!

mG8
(19.19)

for all 8 then after a change of coordinates to

@8 = @8 (G1, . . . , G=) (19.20)

one still has

3

3C

(
m!

m ¤@8

)
=
m!

m@8
(19.21)

for all 8.
Therefore, if the E-L equations are valid in one coordinate system, then they

are valid in all other coordinate systems. We have argued that they are valid in the
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Cartesian coordinate systems for physical system. Thus, the E-L equations hold for
any coordinate system used to describe the physics of some system.

19.5 Conservation Laws

19.5.1 Cyclic coordinates

Suppose we use the coordinate {@8} to describe our system. Suppose that the La-
grangian ! does not depend on @: for some :. Then

3

3C

(
m!

m ¤@:

)
=
m!

m@:
= 0 (19.22)

⇒ m!

m ¤@:
= � (19.23)

for some � that does not depend explicitly on C. We say that such a @: is a cyclic
coordinate and that m!

m ¤@: is a conserved quantity. If the {@8} are the Cartesian co-
ordinates, then m!/m ¤@: = < ¤@: for all : (assuming that the potential energy does
not depend on velocity). Therefore, if ! does not explicitly depend on @: we see
that < ¤@: is a conserved quantity. This is just the momentum in the : Cℎ direction, so
we see that this is just a statement of conservation of momentum. For this reason,
m!/m ¤@: is called the generalized momentum conjugate to the coordinate @: .

Example 19.5 Linearmomentum:Suppose you are standing on a flat surface, which
we consider to be the G-H plane. Consider throwing a ball of mass < into the air (the
I direction). Including 3 spatial degrees of freedom, the Lagrangian is

! =
1
2
<( ¤G2 + ¤H2 + ¤I2) − <6I. (19.24)

We see that ! does not depend on G or H. Thus, we know that m!/m ¤G = < ¤G and
m!/m ¤H = < ¤H are conserved quantities. In fact, these are just the G and H components
of the momentum p of the ball. The Lagrangian doesn’t depend on G or H, so it
shouldn’t matter at one point in the plane one throws the ball upwards. All G and H
points are "the same" and so the quantities that are important to the physics should
also have this symmetry. We see that conservation of linear momentum along a
particular Cartesian direction can be deduced from the translational invariance of
the system along that direction.

Example 19.6 Angular momentum: Consider a potential that only depends on the
distance of the particle from the I axis. The Cartesian coordinates would not be
ideal in this case. Consider using cyclindrical coordinates (d, q, I). In cylindrical
coordinates, the Lagrangian is
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! =
1
2
<( ¤d2 + d2 ¤q2 + ¤I2) −+ (d). (19.25)

! does not depend on I or q. Therefore, m!/m ¤I = < ¤I and m!/m ¤q = <d2 ¤q are
time-independent. The quantity < ¤I is just the I component of the linear momentum
of the particle. What about <d2 ¤q. Note that d ¤q = Eq is the instantaneous velocity
of the particle in the eq direction. Thus, we see that

m!/m ¤q = <d2 ¤q (19.26)
= <dEq

= <(r × v)q .

We see that the second conserved quantity is the angular momentum of the particle
around the I axis. We see that conservation of angular momentum around the I axis
can be deduced from the rotational invariance of the system around the I axis.

19.5.2 Time-invariance

In the previous discussion, we considered the coordinates {@8} as parametrized by
C. We saw that is ! does not explicitly depend on @: , then there is a conserved
quantity. What if ! does not explicitly depend on C? Conservation of energy arises
when the Lagrangian ! does not explicitly depend on C. This is slightly different
from the previous discussion, since C is not a coordinate that the stationary-action
principle applies to. You can vary {@8} but it does not make sense to vary C, as C is
integrated over to get the action (. (As a side note, this is because we are discussing
classical mechanics. Special relativity treats position and time equally, in that they
get mixed up during a change of reference frame. Including Lorentz invariance in, for
example, quantum field theories leads to a slightly different form of the conservation
laws we have seen so far since C is treated on equal footing as all the other spatial
coordinates.) Therefore, the conservation of a quantity due to 3!/3C = 0 must be
proved differently than in the previous discussion. Consider the quantity

� =

(
#∑
8=1

m!

m ¤@8
¤@8

)
− !. (19.27)

It turns out that � is usual the quantity that one considers as the energy. We will
mention the motivation for introducing this � later on, so accept for now that � is
an interesting and useful definition.

Theorem 19.2 If the Lagrangian has no explicit time dependence (m!/mC = 0) and
the Euler-Lagrange equations are satisfied, then � is conserved (3�/3C = 0).

Proof The proof is just an exercise in the chain rule. Start from the definition of �
and differentiate.
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3�

3C
=
3

3C

(
#∑
8=1

m!

m ¤@8
¤@8

)
− 3!
3C

(19.28)

=

#∑
8=1

(
m!

m ¤@8
¥@8 +

(
3

3C

m!

m ¤@8

)
¤@8
)
−

(
#∑
8=1

(
m!

m@8
¤@8 +

m!

m ¤@8
¥@8
)
+ m!
mC

)
=

#∑
8=1

[(
3

3C

m!

m ¤@8

)
− m!

m@8

]
︸                  ︷︷                  ︸

0

¤@8 −
m!

mC

= −m!
mC
.

Thus, we see that if there is no explicit dependence of ! on C (that is, m!/mC = 0),
then 3�/3C = 0. �

Example 19.7 Suppose that the Lagrangian is

! =
1
2
<( ¤G2 + ¤H2 + ¤I2) −+ (G, H, I). (19.29)

Then the definition of � gives

� =
1
2
<( ¤G2 + ¤H2 + ¤I2) ++ (G, H, I), (19.30)

which is indeed the total energy for a classical system.

It might seem like we did a whole lot of work for no reason, but actually the
point is that this method proves conservation of energy in the Lagrangian formalism,
without ever having to mention Newtonian methods.

In sum, we saw that
• translational invariance implied conservation of linear momentum.
• rotational invariance implied conservation of angular momentum.
• time translation invariance implied conservation of energy.
The quantity � will be equal to the energy of the system if the entire system is

represented by the Lagrangian. This means that the system must be a closed system,
with no external forces acting on it. If the system is open, one can still use � and it
will be conserved if m!/mC but it may not necessarily be the energy on the system that
one thinks of in physics. For further discussions, I recommend reading Chapter 6 of
DavidMorin’s "Introduction to Classical Mechanics: With Problems and Solutions."

19.6 Noethers’s Theorem

We have seen that conservation laws and symmetries seem related. A theorem by
Noether provides a procedure for going from the action integrand (the Lagrangian)
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directly to the conserved quantity without having to consider equations of motions
explicitly in intermediate steps. For concreteness, let’s see the idea behind Noether’s
theorem in an example.

Example 19.8 Let us illustrate the insight needed to prove Noether’s theorem in
the case of angular momentum, whose conservation follows, for example, from the
rotational symmetry of a central force problem. The action for the central force
problem (with motion restricted to a 2-D plane, for simplicity) is

( =

∫ )

0

(
1
2
<( ¤A2 + A2 ¤q2) −+ (A)

)
3C. (19.31)

We note that the action (and, also, the integrand) is left invariant under the variation

q(C) → q(C) + nU, (19.32)

where nU is just some constant that we have chosen to write as nU with n being
a small, time-independent parameter. This invariance is the symmetry from which
would we like to derive a conserved quantity. Note that so far, this is a mathematical
identity. That is, no physics was needed to interpret any statements by, for example,
requiring that the principle of stationary action be obeyed and, hence, that A and q
obey the Euler-Lagrange equations.

Suppose now that A and q do obey the Euler-Lagrange equations. This means that
( is stationary for any infinitesimal variations in A and q. In particular, ( must still
be invariant under the specific variation

q(C) → q(C) + n (C)U (19.33)

where now n (C) is allowed to be time-dependent. The action still being stationary
here is not just a mathematical identity, but follows from the fact that A, q obey the
equations of motion, which we interpret as having physical content. Proceeding,

Δ( =

∫ )

0

(<
2
( ¤A2 + A2 ( ¤q + ¤nU)2) −+ (A)

)
3C −

∫ )

0

(<
2
( ¤A2 + A2 ¤q2) −+ (A)

)
3C

=

∫ )

0

<

2
A2 (2 ¤q2 ¤nU + ¤n2U2)3C. (19.34)

To linear order in the variation,

X( = U

∫ )

0
(<A2 ¤q) ¤n3C. (19.35)

Notice that X( depends on ¤n and not just n . Thismakes sense since we saw that X( = 0
as a mathematical identity when n is time-independent. Now, we want variations to
A (C) and q(C) which are still fixed at the endpoints (recall that we considered the class
of functions with fixed endpoints in the derivation of the Euler-Lagrange equations)
so this requires n (0) = n ()) = 0. This allows an integration by parts to move the
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derivative off ¤n , at the introduction of a minus sign

X( = U

∫ )

0

(
3

3C
(<A2 ¤q)

)
n (C)3C. (19.36)

Here is the punch line. The fact that A, q satisfies the equations of motions means that
X( = 0 under any infinitesimal variations. Thus, given any infinitesimal variation
n (C)U to q(C), we must have X( = 0. This means that the coefficient of n (C) in the
above expression for X( must be 0. That is,

0 =
3

3C
(<A2 ¤q), (19.37)

which is a statement of the conservation of angular momentum. There is technically
an U, but we can divide it out to keep only the physical variables.

This suggests a general strategy.

i) Look for an invariance of the action ( under some symmetry transformation of
the inputs to ( with a time-independent parameter. For such cases, the variation
of the action is 0 as a mathematical identity, independent of whether the Euler-
Lagrange equations are satisfied.

ii) Note that if the dynamical variables do satisfy the Euler-Lagrange equations
then the action must be stationary for any infinitesimal variable of the dynamical
variables, even if the time-independent parameter is changed to a time-dependent
parameter.

iii) The resulting variation X( of the action ( to linear order in the parameter will
depend on the total time derivative of the parameter. In cannot depend on the
parameter itself since, by construction/observation in the first part, X( = 0 as a
mathematical identity when the parameter is time-independent.

iv) Integrate by parts to remove the time derivative from the time-dependent pa-
rameter and into whatever was its coefficient.

v) Since the parameter can be arbitrary and we must have X( = 0 due to the
stationary of (when the dynamical variables obey the Euler-Lagrange equations,
the coefficient of the time-dependent variable will be a time derivative of some
quantity. This time derivative must equal to 0. Thus, we have found a conserved
quantity.

Actually, in many cases the Lagrangian itself posses the symmetry rather than
only the action. This is a slightly strong statement since the Lagrangian can different
by a total derivative after a transformation, but the integral of 3C of the total derivative
can vanish so that the action is invariant while the Lagrangian changes by a total
derivative. When the Lagrangian itself has a derivative, a version of Noether’s
theorem is straightforward to prove.

Theorem 19.3 Noether’s theorem - If a Lagrangian has a continuous symmetry then,
when the equations of motion as satisfied, there exists a conserved quantity whose
conservation is related to the symmetry.
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Proof In this case, continuous symmetry means that the change in the dynamical
variables (the coordinates) can be continuously parameterized, where the parameter
can be infinitesimally small. Suppose the Lagrangian is invariant, to first order in the
small parameter n , under the change of coordinates

@8 → @8 + n 8 (@), (19.38)

where each  8 (@) can depend on all the @8 , which we denote as @. The Lagrangian
is invariant to first order in n, so

0 =
3!

3n
(19.39)

=
∑
8

(
m!

m@8

m@8

mn
+ m!
m ¤@8

m ¤@8
mn

)
=

∑
8

(
m!

m@8
 8 +

m!

m ¤@8
¤ 8
)
.

By assumption, the @ satisy the Euler-Lagrange equations so this is the same as

0 =
∑
8

((
3

3C

m!

m ¤@8

)
 8 +

m!

m ¤@8
¤ 8
)

(19.40)

=
3

3C

(∑
8

m!

m ¤@8
 8

)
.

Thus,
∑
8
m!
m ¤@8  8 is a conserved quantity. �

In sum, we see that Noether’s theorem formalizes the idea that

continuous symmetry⇔ conserved quantity.

Problems

19.1 Consider a particle with electric charge @ with Lagrangian

! (x, ¤x) = 1
2
< ¤x2 − @q(x) + @ ¤x · A(x).

Here, q(x) is the electrical potential and A(x) is the magnetic vector potential. Show
that the Euler-Lagrange equations lead to

<¥x = @(E + ¤x × B) (19.41)

where
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E = −∇q − mA
mC

B = ∇ × A

are the electric and magnetic fields, respectively. Of course, Equation 19.41 is the
equation of a charged particle in an electromagnetic field that one learns in a classical
electrodynamics course.



Chapter 20
Coupled Oscillators

Abstract Group theory can provide insight into the structure of the spectrum of a
physical system.

20.1 Two Coupled Oscillators - No Group Theory

Consider two identical blocks of mass < coupled together by a spring with spring
constant :. See Figure 20.1.

1 2

Fig. 20.1: Two blocks coupled by a spring obeying Hooke’s law.

Suppose that the center of mass of the blocks is not moving. Let G1 (C) and G2 (C)
be the deviation of the blocks from their equilibrium positions (in particular, not
relative to the origin of a common coordinate system). The Lagrangian is

! =
1
2
< ¤G2

1 +
1
2
< ¤G2

2 −
1
2
: (G1 − G2)2. (20.1)

Then

229
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m!

mG1
= −: (G1 − G2) (20.2)

m!

mG2
= : (G1 − G2) (20.3)

m!

m ¤G1
= < ¤G1 (20.4)

m!

m ¤G2
= < ¤G2. (20.5)

Apply the Euler-Lagrange equations to get

m!

mG1
− 3

3C

(
m!

m ¤G1

)
= 0⇒ −: (G1 − G2) = < ¥G1, (20.6)

m!

mG2
− 3

3C

(
m!

m ¤G2

)
= 0⇒ : (G1 − G2) = < ¥G2. (20.7)

Let us write this in matrix form.

<
32

3C2

[
G1
G2

]
=

[
−: :

: −:

] [
G1
G2

]
(20.8)

<
32

3C2
- = − -, (20.9)

where we have defined - =
[
G1
G2

]
and  =

[
: −:
−: :

]
. Let’s look for solutions of the

form [
G1
G2

]
=

[
G̃1
G̃2

]
4−8lC (20.10)

- ≡ -̃4−8lC . (20.11)

Then the equations of motion become

−<l2
[
G̃1
G̃2

]
=

[
−: :

: −:

] [
G̃1
G̃2

]
(20.12)

⇒ <l2 -̃ =  -̃. (20.13)

This is an eigenvalue problem. The eigenvalues of the matrix  are found from

det(_�2×2 −  ) = det
[
_ − : :

: −:

]
= 0 (20.14)

(_ − :)2 − :2 = 0 (20.15)
_ = : ± :. (20.16)
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Thus, we see that <l2 = : ± :. That is, l = 0 and l =
√

2:
<

satisfy the eigenvalue
equation. If <l2 = 0, then [

0
0

]
=

[
: −:
−: :

] [
G̃1
G̃2

]
(20.17)

so that G̃1 = G̃2. If <l2 = 2:, then

2:
[
G̃1
G̃2

]
=

[
: −:
−: :

] [
G̃1
G̃2

]
(20.18)

so that G̃1 = −G̃2. Choose an orthonormal eigenbasis

f1 =
1
√

2

[
1
1

]
(20.19)

f2 =
1
√

2

[
1
−1

]
. (20.20)

Then any solutions G1 (C), G2 (C) can be written[
G1
G2

]
= �

1
√

2

[
1
1

]
4−80C + � 1

√
2

[
1
−1

]
4
−8

√
2:
<
C

= �f1 + �f24
−8

√
2:
<
C (20.21)

for some constants �, �.

• If � ≠ 0, � = 0, then G1 = G2. This means that both blocks move the same
distance and in the same direction from their equilibrium points. Of course, if
this happens then the spring is not stretched at all from its equilibrium length.
This corresponds to both blocks sliding at the same velocity, so that the spring
is unstretched. In such cases, the blocks appear to not be moving in the center of
mass frame. That is, they do not oscillate in the center of mass frame, so l = 0.

• If � = 0, � ≠ 0 then G1 = −G2. This means that both blocks move the same
distance from their equilibrium positions, but it opposite directions. In the center
of mass frame, the blocks appear to move back and forth together but in opposite
directions.

The point of Equation 20.21 is that the general motion of the two blocks is a linear
combination of these two motions. The general motion can be thought of the center
of mass moving uniformly across the surface where the blocks don’t oscillate at all
in the center of mass frame plus an oscillation of the two blocks in, as seen in the
center of mass frame, opposite directions with some amplitude of oscillation �.
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20.2 Two Coupled Oscillators - With Group Theory

Let us now consider the problem again, but let us use the fact the the problem has
a symmetry. The system looks exactly the same after reflecting through the center
of mass of the two blocks. You can think of this is a few ways. You can imagine
swapping the blocks, or reflecting the system around the center of mass. See Figure
20.2.

B

Fig. 20.2: Two equivalent blocks coupled by a spring obeying Hooke’s law possess
reflection symmetry around their center of mass.

The physics shouldn’t change since, by assumption, the blocks are equivalent in
the classical mechanics sense. That is, we are assuming they have the same size,
shape, mass, etc. It should be clear that if they are swapped, then there should be
no observable difference in the dynamics of the system. This symmetry group is
(2 � Z2.We already saw that the equations of motion can be written as

<
32

3C2
- = − -, (20.22)

or, in the frequency domain, as

<l2 -̃ =  -̃. (20.23)

The -̃ vectors are eigenvectors of  , with eigenvalues <l2. As soon as you see
this eigenvalue problem, your first instinct is probably to compute the characteristic
polynomial, find the eigenvalues, find the eigenvectors, etc just like we did above. It
might seem like this is the only thing one can do, and that one needs to know what
 is for the system in order to do this procedure. However, even if we didn’t know
the full form of  , it turns out that we can still say some meaningful things about
the solutions by using the known symmetries. Consider reflecting around the center
of mass. Then it is clear that G1 ↦→ −G2 and G2 ↦→ G1. This corresponds to acting by

dB =

[
0 −1
−1 0

]
(20.24)

on the -̃ (and also the time-dependent -) column matrix. Again, the point is that
the physics should be unchanged, meaning that dB -̃ should obey the same equations
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required by physics:

<l2dB -̃ =  dB -̃ . (20.25)

However, we can also multiply <l2 -̃ =  -̃ on the left by dB to find that

<l2dB -̃ = dB -̃ (20.26)

<l2dB -̃ = dB d
−1
B dB -̃ . (20.27)

Since this holds for all -̃ 1, we conclude that dB d−1
B =  . Let us define

d4 =

[
1 0
0 1

]
. (20.28)

Then it is also true, trivially, that d4 d−1
4 =  . However, note that {d4, dB} form a

degree-2 representation of (2 � Z2. The symmetry group here is abelian. We know
from previous chapters that this means that the representation d must be reducible
(see Theorem 16.19 or Theorem 16.18). That is, there exists an invertible matrix g
such that gd4g−1 ≡ d̃4 and gdBg−1 ≡ d̃B break into smaller block-diagonal form.
Since d4, dB are 2-by-2, this means that gd2g

−1 and gdBg−1 are diagonal. From,
d6 d

−1
6 =  for all 6 ∈ �, we conclude that d̃6g g−1 d̃−1

6 = g g−1. Since d̃6 is in
block-diagonal form, where the blocks are irreducible representations of �, Schur’s
lemma tells us that

g g−1 =

[
_1 0
0 _2

]
(20.29)

for some _1, _2. It is clear that
[
1
0

]
is an eigenvector of the right-hand side with

eigenvalue _1 and that
[
0
1

]
is an eigenvector of the right-hand side with eigenvalue

_2. Therefore,

g g−1
[
1
0

]
= _1

[
1
0

]
, g g−1

[
0
1

]
= _2

[
0
1

]
. (20.30)

But this means that

 g−1
[
1
0

]
= _1g

−1
[
1
0

]
,  g−1

[
0
1

]
= _2g

−1
[
0
1

]
. (20.31)

That is, g−1
[
1
0

]
and g−1

[
0
1

]
are eigenvectors of  , with eigenvectors _1, _2, respec-

tively.

1 In this simple physics model, -̃ is unconstrained. Of course, if -̃ gets too large then this harmonic
oscillator model will break down and it won’t be an accurate model in the real-world.
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Without doing more work, this is all we can say. However, let’s do a bit more
work. First, let’s find what g is. Verify that

g =

[
1 1
1 −1

]
(20.32)

satisfies

gd4g
−1 =

[
1 0
0 1

]
(20.33)

gdBg
−1 =

[
−1 0
0 1

]
. (20.34)

Therefore, this is a g that Schur’s lemma states exists. Then, by our discussion above,
we know that

g−1
[
1
0

]
=

1
√

2

[
1
1

]
(20.35)

is an eigenvector with eigenvalue _1 and

g−1
[
0
1

]
=

1
√

2

[
1
−1

]
(20.36)

is an eigenvector with eigenvalue _2. We see the normal modes that we found
previously appearing.

What if we work a bit more? Suppose we knew that

 =

[
: −:
−: :

]
. (20.37)

Then we know that g g−1 is diagonal, and we can calculate to find[
0 0
0 2:

]
. (20.38)

Thus, the eigenvalues of  are _1 = 0 and _2 = 2:.
In the end, we have found the entire solution. This seems like a silly exercise. It

certainly seems as if we have used a sledgehammer to crack a nut. Let’s recap what
we have seen, and see what depends on the specifics of the problem and what can be
deduced using group theory alone.

• We have a physical system (in this case, involving a harmonic oscillator) which
is governed by some equations of motion which can be cast into an eigenvalue
problem  -̃ = _-̃.

• The physical system has some symmetries. Denote the symmetry group �. Let
this symmetry group act on -̃ , with matrices d6 . The statement that the system
has a symmetry group � is embodied in d6 d−1

6 =  for all 6 ∈ �.
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• Since {d6 | 6 ∈ �} is a representation of �, we can ask if it is reducible
or irreducible. If it is irreducible, this means that there exists an invertible g
such that gd6g−1 is block-diagonal for all 6, with the blocks being irreducible
representations of �.

• From d6 d
−1
6 =  , we find d̃6g g−1 d̃−1

6 = g g−1, where d̃6 = gd6g
−1 for

all 6 ∈ �. Schur’s lemma then requires that g g−1 be block-diagonal, and the
blocks along the diagonal are proportional to the identity matrix within that
subspace.

• We observe that g−1e8 is an eigenvector of  where eigenvalue is the constant
multiplying the identity submatrix along the diagonal of g g−1 that we know
exists due to Schur’s lemma.

• In particular, we know that the number of eigenvalues of the  that will have
the same value is (at least) equal to the number of times an irrep appears in d
times the dimensional of that irrep.

Let us stop here. The last sentence is what we wish to focus on. In particular, no
knowledge about the form of  is needed to reach the last bullet point. Therefore,
we see that group theory lets us predict some structure/pattern in the eigenvalues of
 independent of the actual details  . In physics terms, this means we can predict
patterns in the eigenvalues (that it ultimately related to the dynamics of a system) are
"independent of the microscopic details." Many physical systems can have different
 that describe their dynamics, but as long as they have the same symmetry group
� then we predict that the eigenvalues will have the same pattern, though the exact
values of those eigenvalues will differ and depend on the exact form of  .

Before formalizing our observations even more, let’s do another example that is
a bit more complex to convince ourselves that what we are doing actually provides
useful information.

20.3 Three Blocks and Springs

The previous example involved two blocks coupled by spring obeying Hooke’s
law. We restricted the motion along one dimension, and the symmetry there was
reflection around the center of mass of the two equivalent blocks. This symmetry
was isomorphic to (2 (which is isomorphic to Z2). Suppose now that we have three
identical (in the classical sense) blocks of mass < that are coupled by three identical
springs with spring constants :. See Figure 20.3.

The blocks are labeled 1, 2, and 3. We restrict the motion to a plane. Label the
coordinates of blocks 1, 2, 3 relative to their equilibrium positions (in particular,
not relative to the origin of a common coordinate system) as (G1, H1), (G2, H2), and
(G3, H3), respectively. The G coordinates are horizontal deviations from the equilib-
rium positions, and the H coordinates are vertical deviations from the equilibrium
positions. Let '(q) be rotation by angle q
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B

2 3

1

A

Fig. 20.3: A system of coupled cylindrical blocks, say, with reflection and rotation
symmetries. The symmetry group is �3 (which is isomorphic to (3, which can be
thought of as permuting the blocks 1, 2, 3 among themselves).

'(q) =
[
cos q − sin q
sin q cos q

]
. (20.39)

The action of A on the coordinates is described by

dA



G1
H1
G2
H2
G3
H3


=



'(120◦)
[
G3
H3

]
'(120◦)

[
G1
H1

]
'(120◦)

[
G2
H2

]


(20.40)

so that

dA =



0 0 0 0 − 1
2 −

√
3

2
0 0 0 0

√
3

2 − 1
2

− 1
2 −

√
3

2 0 0 0 0√
3

2 − 1
2 0 0 0 0

0 0 − 1
2 −

√
3

2 0 0
0 0

√
3

2 − 1
2 0 0


. (20.41)

Also, we easily see that
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dB



G1
H1
G2
H2
G3
H3


=



−G1
H1
−G3
H3
−G2
H2


(20.42)

so that

dB =



−1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 1
0 0 −1 0 0 0
0 0 0 1 0 0


. (20.43)

Of course, d4 = �6×6. One could proceed similarly in this geometric fashion to find
d6 for all 6 ∈ �. However, given that the reader was very attentive in Parts I and
II of the text, the reader knows that �3 = 〈A, B〉 so any 6 ∈ �3 can be written as
6 = A0B1 for some 0 = 0, 1, 2, 3 and 1 = 0, 1. Then, since d is a homomorphism, the
reader knows that

d6 = dA0B1 = (dA )0 (dB)1 . (20.44)

Also, recall that the conjugacy classes of �3 are

{4}, {A, A2}, {B, AB, A2B}. (20.45)

Thus, using only d4, dA , and dB one can compute the character j of the representation
d. From above, we see that Tr(d4) = 6, Tr(dB) = 0, and Tr(dA ) = 0. See Table 20.1.

Table 20.1: Character of d, the degree-6 representation we just constructed.

size 1 3 2
class 4 B A
j 6 0 0

j is not irreducible. To prove this analytically, note that

(j |j) = 1
6
(1 · 6 · 6 + 3 · 0 · 0 + 2 · 0 · 0) (20.46)

= 6
≠ 1
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so, by Theorem 16.11, d is reducible. Problem 16.16 works through the character
table of (3 � �3. In case the reader hasn’t derived the character for (3 or �3,
we suggest working out that problem. In any case, Table 20.2 summarizes the
information relevant to this discussion.

Table 20.2: Character table of �3.

size 1 3 2
class 4 B A

j (1) 1 1 1
j (2) 1 −1 1
j (3) 2 0 −1
j 6 0 0

Knowing that d is reducible, let’s calculate the following:

(j |j (1) ) = 1
6
(1 · 6 · 1 + 3 · 0 · 1 + 2 · 0 · 1) = 1 (20.47)

(j |j (2) ) = 1
6
(1 · 6 · 1 + 3 · 0 · (−1) + 2 · 0 · 1) = 1 (20.48)

(j |j (3) ) = 1
6
(1 · 6 · 2 + 3 · 0 · 0 + 2 · 0 · (−1)) = 2. (20.49)

By Theorem 16.10, we conclude that

d = d (1) ⊕ d (2) ⊕ 2d (3) . (20.50)

That is, d consists of two distinct degree-1 representations and two copies of a
degree-2 representation. Since d is reducible, we can find an invertible g (a change
of basis) such that

d̃6 ≡ gd6g−1 =


d
(1)
6

d
(2)
6

d
(3)
6

d
(3)
6


(20.51)

for all 6 ∈ �. The blanks in the matrix are to be filled with zeros. As before, we can
change bases so that the equation d6 d−1

6 =  (this embodies the fact that � is a
symmetry of the system) can be rewritten as d̃6g g−1 d̃−1

6 = g g−1 for all 6 ∈ �.
Using Schur’s lemma, we conclude that

g g−1 =


_1�1×1

_2�1×1
_3�2×2

_4�2×2

 . (20.52)
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That is, we see that the eigenvalues of  are, including multiplicities,

_1, _2, _3, _3, _4, _4. (20.53)

with eigenvectors g−1e1, g−1e2, . . . , g−1e6. This is the power of group theory. Notice
that we did not need the actual form of  to conclude that the eigenvalues must
have this structure/pattern. If one works out what g is, then one would also know
the normal modes of the system, even without knowing the exact form of  . The
point is that the symmetry of the problem already tells us some information on the
structure/pattern of the eigenvalues and eigenvectors of the problem. "All"  does
is control the particular values of the eigenvalues.

Remark: In the above example, group theory predicts 4 distinct eigenvalues, with
multiplicities 1, 1, 2, 2. However, it may very well be that _3 = _4 and so there
are only 3 distinct eigenvalues with multiplicities 1, 1, 4. Symmetry considerations
alone cannot predict when this happens. The fact that, for example, _3 repeats at least
twice is predicted by the symmetry considerations above. Therefore, even though _3
repeats we do not view this as a surprise or an accident. However, if some of the
lambdas in blocks corresponding to different copies of irreducible representations
after using Schur’s lemma to simplify g g−1 happen to be equal, we say that there
is an accidental degeneracy. To know when this happens, one needs to know more
information than just the symmetry group �. For example, one needs to know the
exact form of  to see that the characteristic polynomial has more redundant roots
for special values of parameters that appear in  that one could not predict using
only the symmetry group �.

20.4 Harmonic Systems of Masses and Springs

Let use generalize and formalize our findings. Consider a case of # particles of
equal mass that are coupled by ideal (that is, massless, to simplify the equations)
springs in a �-dimensional space. Again, in classical physics this means � spatial
dimensions, and the time dimensional is considered the temporal dimension and
is counted separately. Denote the deviation of the 0Cℎ particle in the 8Cℎ Cartesian
coordinate direction from it’s equilibrium position by G (0)

8
(so, 8 = 1, 2, . . . , �). Then

the equations of motion look like

<
32

3C2
G
(0)
8

= −
#∑
1=1

�∑
9=1
 8,0, 9,1G

(1)
9
, (20.54)

where  8,0, 9,1 is some expression involving the spring constants of the system.
Collect the G (0)

8
into a column vector - of length �#
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- =



G
(1)
1
...

G
(1)
�

G
(2)
1
...

G
(2)
�
...
...

G
(# )
�



. (20.55)

Look for solutions of the form - = -̃4−8lC , where -̃ has no time dependence. Then
the equations of motion can be written as

<l2 -̃ =  -̃ (20.56)

for some �#-by-�# matrix  . Actually, the matrix  will end up being symmetry
due to Newton’s third law. Without group theory, it appears that the only thing one
can do is proceed with the eigenvalue problem <l2 -̃ =  -̃.

20.4.1 Group Theory Gives Insight Into the Spectrum

In principle, it shouldn’t be too difficult to construct the matrix  if we know
what the classical system is and what the spring constants involved are. However,
let’s ignore the exact form of  except for the following fact: the system has some
symmetries. Denote the symmetry group �. The group � can act on the system,
with the action on the coordinates -̃ being described by matrices d6 for each 6 ∈ �.
The physics should be invariant under this action. This fact ends up requiring that
d6 d

−1
6 =  for any 6 ∈ �. By construction, the matrices {d6 | 6 ∈ �} form

a representation of �. Once the representation d is known, one can compute that
character j of d. If the symmetry group� is known, one can construct it’s character
table. Let the irreducible representations be d (1) , . . . , d (#8AA ) with characters j (8)
for 8 = 1, . . . , #8AA . In general, d will be a reducible representation. Therefore, there
is an invertible g such that

d̃6 ≡ gd6g−1 (20.57)

is block-diagonal, where the irreducible representations of � appear along the diag-
onal. In particular, Theorem 16.10 we know that

d = <1d
(1) ⊕ · · · ⊕ <#8AA

d (#8AA ) (20.58)
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where <8 = (j |j (8) ) in the number of times that the irrep d (8) appears in d. The
condition that d6 d−1

6 =  for any 6 ∈ � becomes d̃6g g−1 d̃−1
6 = g g−1. Denote

the degree of the representation d (8) by =8 . By Schur’s lemma, we conclude that

g g−1 =



. . . 0 0 0 0
0 (#)�=A×=A 0 0 0

0 0
. . . 0 0

0 0 0 (#)�=B×=B 0

0 0 0 0
. . .


. (20.59)

The point is that this part follows solely from group theory considerations, and from
this part we can conclude some properties of the spectrum. Namely, if d (8) appears
in d at least once, then we expect =8 eigenvalues to be degenerate (the same). If d (8)
appears multiple times, say <8 times in d then we expect <8 sets of =8 eigenvalues
each where each set has degenerate eigenvalues. It could very well happen that some
(or all) of these sets actually have the same eigenvalues, but group theory alone
cannot predict this. In such cases, we say that we have accidental degeneracy. If you
compute (either by hand, but realistically using numerical methods) the matrix g
then the eigenvectors of the system are g−1e: with eigenvalue the scalar in the (:, :)
entry of g g−1 where : = 1, . . . , �#.

20.4.2 Just Think of It as a Harmonic Oscillator

As a closing comment, we address a concern that the reader might have. All of
this work seems to work out nicely because the force is linear is the displace -,
so we end up getting a eigenvalue problem for -. Isn’t this too restrictive? Can’t
objects interaction with each other in ways involving ideal springs obeying Hooke’s
law? Yes, but actually many systems can, at low excitation energy, be thought of as
interacting via springs. Consider an interaction potential +8=C (A) and assume that it
only depends on the distance A between two particles. Assuming that there exists a
position, call it the equilibrium position, where there is no net force. Since F = −∇+,
this means that ∇+ = 0 at A4@ . In 1-D, this means+ ′

8=C
(A4@) = 0. For small deviations

for A from A4@ , we have find, using Taylor’s theorem,

+8=C (A4@ + A) = +8=C (A4@) ++ ′8=C (A4@)A +
1
2
+ ′′8=C (A4@)A2 + · · · . (20.60)

For small deviations around the equilibrium point, we can keep only the second-order
term and so

+8=C (A) ≈ +8=C (A4@) +
1
2
+ ′′8=C (A4@)A2. (20.61)



242 20 Coupled Oscillators

The constant+8=C (A4@) can be dropped since constant shifts in the potential don’t after
the dynamics (which depends on F = −∇+8=C ). Recall that the potential energy of an
ideal spring that is stretched from its equilibrium position by G stores energy 1

2 :G
2.

Thus, we see that +8=C has a harmonic-spring-like interaction with : = + ′′
8=C
(A4@).

Of course, if + ′′(A4@) = 0 then this analogy breaks down, but this usually only
happens for very special interactions. The point is that # interacting particles can be
thought of similarly. For small deviations of the # particles from their equilibrium
position, the linear terms sum to 0 and so, to lowest order, one has terms that look
like harmonic-spring-like interactions.

20.4.3 Lennard-Jones

Let us consider molecular crystals composed on noble gas atoms. Omit solid helium,
since the mass is small enough that quantum mechanical effects manifest and so
classical mechanics reasoning doesn’t work as well as it does for the heavier noble
gases.2 Noble gases has full valence shells, so the first instinct is to think of the atoms
as just balls floating around and bouncing off of each other. However, they aren’t
completely free and they are able to interact with each other. This is because atoms
aren’t perfect point particles, so their charge isn’t evenly concentrated at one point.
Quantum mechanically, even if the expectation value of the charge density is 0, the
expectation value of the variance of the charge density is not 0. This means that the
electric field generated by a noble gas atom is on average 0, there are fluctuations.
During these fluctuations, the electric field generated by one atom can jiggle the
electrons in a neighboring atom, which will then also generated a nonzero electric
field which will then result in an interaction with neighbors and so on. Thus, we
expect some attraction mediated by the electromagnetic force between the noble
gases and not just the gravitational attractive force. On the other hand, if the atoms
get to close together than the cores of the atoms will start to get too close together.
The core of an atom consists of protons (and neutrons), which will repel each other.
We want to cook up a potential to capture this phenomenon.

To summarize, we want

• A potential that is attractive for far enough distances. Otherwise, the atoms
would pass one another or bounce off one another and then fly off "to infinity"
(away from one another).

• A potential that is repulsive for close enough distances, since we don’t want all
the atoms collapsing into a single spatial point.

2 The wavelength associated to an object, called the de Broglie wavelength, is _ = 2cℏ/?, where
? is the magnitude of the momentum. For low velocities where special relativity can be neglected,
? = <E. Helium has the smallest mass of the noble gases, meaning it has the largest de Broglie
wavelength at the same experimental conditions so quantum mechanical effects are observable
more readily.
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There are manyways to proceed. A common approach is to try to model this behavior
using potentials in the form of power laws. Conventionally, the power is chosen to
be 12 and the resulting potential has the form

+ (A) = − �
A6 +

�

A12 , (20.62)

where � and � are some positive constants, determined for experimental data.
Actually, it is common to write the potential in terms of dimensionless quantities

+ (A)
4n

=

[(f
A

)12
−

(f
A

)6
]

(20.63)

f = (�/�)1/6 (20.64)

n = �2/4�. (20.65)

This is known as the Lennard-Jones 6-12 potential. See Figure 20.4. To emphasize
again, this is just a convention. One could choose a different + (A) with even more
parameters to model the behavior. In any case, we see that if there are only two
particles that interacting via a Lennard-Jones potential, that there is a separation A4@
where the net force is zero (−+ ′(A4@) = 0) and that small deviations around that
point can be well approximated by a potential which is the Taylor series expansion
of+ (A) to second order in the deviation. Thus, for small deviations from equilibrium
the two particles appear to behave as if they were connected by an ideal spring with
spring constant + ′′(A4@).

Problems

20.1 Consider a system with eight blocks of mass< coupled to each other by springs
with spring constant :. Consider only nearest-neighbor coupled, as shown in Figure
20.5. In equilibrium, all the springs have the same length and there is no oscillation.

a) What is the symmetry � of this dynamical system?
b) What are the conjugacy classes �?
c) How many degrees of freedom are there? (Hint: Don’t use Cartesian coordi-

nates.)
d) The group � has some generator(s). Find d6 when 6 is equal to the generator(s)

you listed.
e) What is the character table for �? Leave room for an extra row at the bottom of

your character table for the next part.
f) Let j be the character of d.Write it at the bottom of your character table.
g) What is (j |j)? Is d irreducible?
h) Write d as a direct sum of irreducible representations.
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(a) The Lennard-Jones 6-12 potential is repulsive (the force is −+ ′ (A ) > 0) at small
separations but attractive (the force is −+ ′ (A ) < 0) at larger separations.

(b) For small deviations about the minimum of + (A ) , the quadratic approxi-
mation is good enough.

Fig. 20.4: The Lennard-Jones 6-12 potential is a common choice used to model the
interaction between noble gases.
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i) What does the previous part imply about the eigenfrequencies of this system?
That is, what pattern/structure should one expect to see in the eigenfrequencies,
assuming no accidental degeneracies?

j) Suppose one adds springs with spring constant :2 that connects next-nearest-
neighbors. What about the dynamics changes, and what conclusions still stay
the same?

<
:

Fig. 20.5: Eight identical masses with mass < are coupled by springs with spring
constant :, as shown above.





Chapter 21
Quantum Mechanics and Group Theory

Abstract Group theory can provide insight into the structure of the spectrum of a
physical system.

21.1 Quantum Mechanics and Superposition

Many of the techniques and conclusions from the previous chapter carry over to phys-
ical systems modeled using quantum mechanics (as opposed to classical/Newtonian
physics as in the last chapter). In quantum mechanics, there is an operator known
as the Hamiltonian of the system �̂. The system is described by a wave function
Ψ(x, C) which obeys Schrodinger’s equation

8ℏ
3

3C
Ψ(x, C) = �̂Ψ(x, C). (21.1)

Here, ℏ is Planck’s constant. A common thing to do it write Ψ(G, C) = k(x)4−8�C/ℏ.
If �̂ is independent of time, this is always possible since any complex number 2
can always be written as 2 = 2̃4−8�C/ℏ for an appropriate 2̃. Then Schrodinger’s
time-dependent equation leads to the time-independent equation

�̂k(x) = �k(x). (21.2)

So far, � is just a mathematical constant introduced when we factored Ψ(x, C) into
a time-dependent and time-independent piece. Actually, � will often end up being
the energy of the system when the particle is in state k(x)4−8�C/ℏ.

21.2 Degeneracy

One can solve �̂k = �k for the eigenvalues and eigenvectors {�8 , k8}:

247
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�̂k8 = �8k8 .

In general, we expect different eigenvectors k8 , k 9 (8 ≠ 9) to have different eigen-
values �8 ≠ � 9 . However, there could be a collection of = eigenvectors, label then
k0 for 8 = 1, 2, . . . = such that they all have the same eigenvalue � :

�̂k0 = �k0 for 0 = 1, 2, · · · , =. (21.3)

Assume that 3 is finite. Then we say that the system has a 3-fold degeneracy at the
energy level �.

In the early days of quantum mechanics, scientists were measuring the emission
spectrum and absorption spectra of different compounds. The existence of degener-
acy was initially puzzling. In general, if have a matrix � that you will diagonalize,
you have no reason to expect that a number of eigenvalues will be the same. Of
course, symmetry offers an explanation.

21.3 Degeneracy and Symmetries

The systems that one studies in physics often possess certain symmetries. This
could be inversion, rotations, reflections, time-reversal symmetry, etc. Often, the
symmetry can be represented by a unitary operator *̂1. The symmetry is embodied
in the equation

*̂†�̂*̂ = �̂. (21.4)

To see why, suppose that $̂ is some observable operator. One cannot measure $̂, but
rather the expectation value 〈k |$̂ |k〉. Then *̂k should obey the same physics, and
should be physical indistringuishable. This means that

〈k |$̂ |k〉 = ( |k〉)† |$̂ |k〉 (21.5)

should equal

(*̂ |k〉)† |$̂ |*̂k〉 = 〈k |*̂†$̂*̂ |k〉. (21.6)

That is,

〈k |$̂ |k〉 = 〈k |*̂†$̂*̂ |k〉. (21.7)

Since this should hold for any k, this implies $̂ = *̂†$̂*̂. When the observable
operator is the Hamiltonian, this implies �̂ = *̂†�̂*̂. Since *̂ is unitary, *̂† = *̂−1,
so this is the same as *̂�̂ = �̂*̂. Let k0 be an eigenvector of �̂ with eigenvalue �.
Then

1 A notable exception is time-reversal symmetry, which is represented by an anti-unitary operator.
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�̂k0 = �k0 (21.8)
*̂�̂k0 = �*̂k0 . (21.9)

Therefore, unless we have reason to believe that *̂k0 = k0, then *̂k0 is a wave
function distinct from k0 that is also an eigenfunction of �̂ with eigenvalue �. This
means that *̂k0 is a linear combination of the k1 for 1 = 1, 2, . . . =:

*̂k0 =

=∑
1=1
(� (*))01k1 . (21.10)

This suggests that we can expect degeneracies in the spectrum. Suppose that +̂ is
another symmetry of the system. You can verify that (+̂*̂)�̂ = �̂ (+̂*̂) as well. Let
� be the symmetry group of the system. Thinking of the operators as matrices, we
can collect the matrices and relabel them by d6 . Then the symmetry of the system
is embodied in

d6� = �d6 (21.11)

for all 6 ∈ �. In general, d will be reducible. Let g be the matrix such that

d̃6 ≡ gd6g−1 (21.12)

is is block-diagonal form for all 6 ∈ �. Then d6�d−1
6 = � can be written as

d̃6 (g�g−1) d̃−1
6 = g�g−1. (21.13)

In particular, Theorem 16.10 we know that

d = <1d
(1) ⊕ · · · ⊕ <#8AA

d (#8AA ) (21.14)

where <8 = (j |j (8) ) is the number of times that the irrep d (8) appears in d. Denote
the degree of the representation d (8) by =8 . By Schur’s lemma, this means that

g�g−1 =



. . . 0 0 0 0
0 (#)�=A×=A 0 0 0

0 0
. . . 0 0

0 0 0 (#)�=B×=B 0

0 0 0 0
. . .


. (21.15)

The point is that this part follows solely from group theory considerations, and from
this part we can conclude some properties of the spectrum. Namely, if d (8) appears
in d at least once, then we expect =8 eigenvalues to be degenerate (the same). If d (8)
appears multiple times, say <8 times in d then we expect <8 sets of =8 eigenvalues
each where each set has degenerate eigenvalues. It could very well happen that some
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(or all) of these sets actually have the same eigenvalues, but group theory alone
cannot predict this. In such cases, we say that we have accidental degeneracy.

21.3.1 Symmetries and Degeneracies - A Relationship

We see that if the system has a symmetry, we expect degeneracies in the spectrum
where the degeneracies are equal to the dimension of the irreducible representations
of �, the symmetry group of the system. Conversely, this means that if we have a
physical system and we observe a pattern in the spectrum, then we could try to work
backwards to predict what the symmetry group is. Of course, this isn’t an invertible
process since character tables aren’t distinct for distinct (that is, non-isomorphic)
groups. For example,&8 and �4 have the same character tables even though they are
not isomorphic. However, by experimentally measuring the spectrumwe can rule out
certain symmetries. Suppose� ′ is a group that predict some energy level �★ should
have degeneracy 3★.2 From the experimental data, we see no such degeneracies so
we conclude that � ′ cannot be a symmetry of the system. We can proceed this way
and narrow down the list of possible suspects. After the list is shortened, one could
then try to find a method to further narrow down the list by seeing what properties
of the system should experimentally differ between the different symmetries.

2 Rather, at least 3★ since accidental degeneracies may occur.
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